Browsing by Author "Yang, Jinzhong"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemAutomated treatment planning of postmastectomy radiotherapy(American Association of Physicists in Medicine, 2019-05-11) Kisling, Kelly; Zhang, Lifei; Shaitelman, Simona F.; Anderson, David; Thebe, Tselane; Yang, Jinzhong; Balter, Peter A.; Howell, Rebecca M.; Jhingran, Anuja; Schmeler, Kathleen; Simonds, Hannah; Du Toit, Monique; Trauernicht, Christoph; Burger, Hester; Botha, Kobus; Joubert, Nanette; Beadle, Beth M.; Court, LaurencePurpose: Breast cancer is the most common cancer in women globally and radiation therapy is a cornerstone of its treatment. However, there is an enormous shortage of radiotherapy staff, especially in low- and middle-income countries. This shortage could be ameliorated through increased automation in the radiation treatment planning process, which may reduce the workload on radiotherapy staff and improve efficiency in preparing radiotherapy treatments for patients. To this end, we sought to create an automated treatment planning tool for postmastectomy radiotherapy (PMRT). Methods: Algorithms to automate every step of PMRT planning were developed and integrated into a commercial treatment planning system. The only required inputs for automated PMRT planning are a planning computed tomography scan, a plan directive, and selection of the inferior border of the tangential fields. With no other human input, the planning tool automatically creates a treatment plan and presents it for review. The major automated steps are (a) segmentation of relevant structures (targets, normal tissues, and other planning structures), (b) setup of the beams (tangential fields matched with a supraclavicular field), and (c) optimization of the dose distribution by using a mix of high- and low-energy photon beams and field-in-field modulation for the tangential fields. This automated PMRT planning tool was tested with ten computed tomography scans of patients with breast cancer who had received irradiation of the left chest wall. These plans were assessed quantitatively using their dose distributions and were reviewed by two physicians who rated them on a three-tiered scale: use as is, minor changes, or major changes. The accuracy of the automated segmentation of the heart and ipsilateral lung was also assessed. Finally, a plan quality verification tool was tested to alert the user to any possible deviations in the quality of the automatically created treatment plans. Results: The automatically created PMRT plans met the acceptable dose objectives, including target coverage, maximum plan dose, and dose to organs at risk, for all but one patient for whom the heart objectives were exceeded. Physicians accepted 50% of the treatment plans as is and required only minor changes for the remaining 50%, which included the one patient whose plan had a high heart dose. Furthermore, the automatically segmented contours of the heart and ipsilateral lung agreed well with manually edited contours. Finally, the automated plan quality verification tool detected 92% of the changes requested by physicians in this review. Conclusions: We developed a new tool for automatically planning PMRT for breast cancer, including irradiation of the chest wall and ipsilateral lymph nodes (supraclavicular and level III axillary). In this initial testing, we found that the plans created by this tool are clinically viable, and the tool can alert the user to possible deviations in plan quality. The next step is to subject this tool to prospective testing, in which automatically planned treatments will be compared with manually planned treatments.
- ItemFully automatic treatment planning for external-beam radiation therapy of locally advanced cervical cancer : a tool for low-resource clinics(American Society of Clinical Oncology, 2019) Kisling, Kelly; Zhang, Lifei; Simonds, Hannah M.; Fakie, Nazia; Yang, Jinzhong; McCarroll, Rachel; Balter, Peter; Burger, Hester; Bogler, Oliver; Howell, Rebecca; Schmeler, Kathleen; Mejia, Mike; Beadle, Beth M.; Jhingran, Anuja; Court, LaurencePURPOSE: The purpose of this study was to validate a fully automatic treatment planning system for conventional radiotherapy of cervical cancer. This system was developed to mitigate staff shortages in low-resource clinics. METHODS: In collaboration with hospitals in South Africa and the United States, we have developed the Radiation Planning Assistant (RPA), which includes algorithms for automating every step of planning: delineating the body contour, detecting the marked isocenter, designing the treatment-beam apertures, and optimizing the beam weights to minimize dose heterogeneity. First, we validated the RPA retrospectively on 150 planning computed tomography (CT) scans. We then tested it remotely on 14 planning CT scans at two South African hospitals. Finally, automatically planned treatment beams were clinically deployed at our institution. RESULTS: The automatically and manually delineated body contours agreed well (median mean surface dis- tance, 0.6 mm; range, 0.4 to 1.9 mm). The automatically and manually detected marked isocenters agreed well (mean difference, 1.1 mm; range, 0.1 to 2.9 mm). In validating the automatically designed beam apertures, two physicians, one from our institution and one from a South African partner institution, rated 91% and 88% of plans acceptable for treatment, respectively. The use of automatically optimized beam weights reduced the maximum dose significantly (median, −1.9%; P , .001). Of the 14 plans from South Africa, 100% were rated clinically acceptable. Automatically planned treatment beams have been used for 24 patients with cervical cancer by physicians at our institution, with edits as needed, and its use is ongoing. CONCLUSION: We found that fully automatic treatment planning is effective for cervical cancer radiotherapy and may provide a reliable option for low-resource clinics. Prospective studies are ongoing in the United States and are planned with partner clinics.
- ItemRadiation planning assistant - a streamlined, fully automated radiotherapy treatment planning system(Journal of Visualized Experiments, 2018) Court, Laurence E.; Kisling, Kelly; McCarroll, Rachel; Zhang, Lifei; Yang, Jinzhong; Simonds, Hannah; Du Toit, Monique; Trauernicht, Chris; Burger, Hester; Parkes, Jeannette; Mejia, Mike; Bojador, Maureen; Balter, Peter; Branco, Daniela; Steinmann, Angela; Baltz, Garrett; Gay, Skylar; Anderson, Brian; Cardenas, Carlos; Jhingran, Anuja; Shaitelman, Simona; Bogler, Oliver; Schmeller, Kathleen; Followill, David; Howell, Rebecca; Nelson, Christopher; Peterson, Christine; Beadle, BethThe Radiation Planning Assistant (RPA) is a system developed for the fully automated creation of radiotherapy treatment plans, including volume-modulated arc therapy (VMAT) plans for patients with head/neck cancer and 4-field box plans for patients with cervical cancer. It is a combination of specially developed in-house software that uses an application programming interface to communicate with a commercial radiotherapy treatment planning system. It also interfaces with a commercial secondary dose verification software. The necessary inputs to the system are a Treatment Plan Order, approved by the radiation oncologist, and a simulation computed tomography (CT) image, approved by the radiographer. The RPA then generates a complete radiotherapy treatment plan. For the cervical cancer treatment plans, no additional user intervention is necessary until the plan is complete. For head/neck treatment plans, after the normal tissue and some of the target structures are automatically delineated on the CT image, the radiation oncologist must review the contours, making edits if necessary. They also delineate the gross tumor volume. The RPA then completes the treatment planning process, creating a VMAT plan. Finally, the completed plan must be reviewed by qualified clinical staff.