Browsing by Author "Van der Westhuizen, Daniel Erasmus"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- ItemUsing synthetic fibres in concrete to control drying shrinkage cracking in concrete slabs-on-grade(Stellenbosch : Stellenbosch University, 2013-12) Van der Westhuizen, Daniel Erasmus; Boshoff, William Peter; Stellenbosch University. Faculty of Engineering. Dept. of Civil Engineering.ENGLISH ABSTRACT: Macro synthetic fibre reinforced concrete (SynFRC) is a relatively new concrete for the purpose of being used in structural elements which only require minimum reinforcement and are supported continuously by sub-layers. One structural element that is of particular interest is slabs-on-grade which is supported by a subgrade/sub-base and requires minimum reinforcement to control the shrinkage strains which may result in cracking. The aim of this project is to investigate the potential use of macro SynFRC in the application of controlling drying shrinkage cracking (DSC) in concrete slabs-on-grade. The focus is on the use of concrete slabs-on-grade that is intended for industrial floors. The SynFRC material parameters of interest were characterised first with the aid of various experimental tests. These are: flexural tests, compression tests, friction tests between the SynFRC and wooden surfaces used for full scale testing, and the shrinkage of the concrete. Next the post-cracking tensile behaviour of the SynFRC was determined by way of an inverse analysis. These tensile responses were subsequently used to perform a series of different finite element analyses. These analyses were performed on specific slabs-on-grade to determine the effects of the added tensile behaviour of the SynFRC on the DSC. The results obtained concerned: the spacing of cracks, the maximum and average crack width, and the difference in crack width between the normal concrete (NC) and the SynFRC. These changes take place in accordance to the concrete age. From the analyses it was determined that the addition of fibres gives the concrete a ductility that allows the concrete to crack more than NC, yet does not allow the cracks to propagate. This applies to low fibre contents of less than 0.4% by volume and a slab thickness of 200mm, as well as to fibre contents that have Re,3 values of 0.51 and higher. Moreover, it results in improvements seen when adding fibres if the friction is sticky, meaning when the maximum friction between the slab and the subgrade is reached with a very small amount of movement. With a stickier friction though smaller crack widths occur within both the NC and the SynFRC.