Browsing by Author "Van Pittius, Nicolaas C. Gey"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemGeospatial distribution of Mycobacterium tuberculosis genotypes in Africa(Public Library of Science, 2018-08-01) Chihota, Violet N.; Niehaus, Antoinette; Streicher, Elizabeth M.; Wang, Xia; Sampson, Samantha L.; Mason, Peter; Kallenius, Gunilla; Mfinanga, Sayoki G.; Pillay, Marnomorney; Klopper, Marisa; Kasongo, Webster; Behr, Marcel A.; Van Pittius, Nicolaas C. Gey; Van Helden, Paul D.; Couvin, David; Rastogi, Nalin; Warren, Robin M.Objective: To investigate the distribution of Mycobacterium tuberculosis genotypes across Africa. Methods: The SITVIT2 global repository and PUBMED were searched for spoligotype and published genotype data respectively, of M. tuberculosis from Africa. M. tuberculosis lineages in Africa were described and compared across regions and with those from 7 European and 6 South-Asian countries. Further analysis of the major lineages and sub-lineages using Principal Component analysis (PCA) and hierarchical cluster analysis were done to describe clustering by geographical regions. Evolutionary relationships were assessed using phylogenetic tree analysis. Results: The SITVIT2 global repository and PUBMED were searched for spoligotype and published genotype data respectively, of M. tuberculosis from Africa. M. tuberculosis lineages in Africa were described and compared across regions and with those from 7 European and 6 South-Asian countries. Further analysis of the major lineages and sub-lineages using Principal Component analysis (PCA) and hierarchical cluster analysis were done to describe clustering by geographical regions. Evolutionary relationships were assessed using phylogenetic tree analysis. Results: A total of 14727 isolates from 35 African countries were included in the analysis and of these 13607 were assigned to one of 10 major lineages, whilst 1120 were unknown. There were differences in geographical distribution of major lineages and their sub-lineages with regional clustering. Southern African countries were grouped based on high prevalence of LAM11-ZWE strains; strains which have an origin in Portugal. The grouping of North African countries was due to the high percentage of LAM9 strains, which have an origin in the Eastern Mediterranean region. East African countries were grouped based on Central Asian (CAS) and East-African Indian (EAI) strain lineage possibly reflecting historic sea trade with Asia, while West African Countries were grouped based on Cameroon lineage of unknown origin. A high percentage of the Haarlem lineage isolates were observed in the Central African Republic, Guinea, Gambia and Tunisia, however, a mixed distribution prevented close clustering. Conclusions: This study highlighted that the TB epidemic in Africa is driven by regional epidemics characterized by genetically distinct lineages of M. tuberculosis. M. tuberculosis in these regions may have been introduced from either Europe or Asia and has spread through pastoralism, mining and war. The vast array of genotypes and their associated phenotypes should be considered when designing future vaccines, diagnostics and anti-TB drugs.
- ItemIndependent large scale duplications in multiple M. tuberculosis lineages overlapping the same genomic region(Public Library of Science, 2012-02-07) Weiner, Brian; Gomez, James; Victor, Thomas C.; Warren, Rob; Sloutsky, Alexander; Plikaytis, Bonnie B.; Posey, James E.; Van Helden, Paul D.; Van Pittius, Nicolaas C. Gey; Koehrsen, Michael; Sisk, Peter; Stolte, Christian; White, Jared; Gagneux, Sebastian; Birren, Bruce; Hung, Deborah; Murray, Megan; Galagan, JamesENGLISH ABSTRACT: Mycobacterium tuberculosis, the causative agent of most human tuberculosis, infects one third of the world’s population and kills an estimated 1.7 million people a year. With the world-wide emergence of drug resistance, and the finding of more functional genetic diversity than previously expected, there is a renewed interest in understanding the forces driving genome evolution of this important pathogen. Genetic diversity in M. tuberculosis is dominated by single nucleotide polymorphisms and small scale gene deletion, with little or no evidence for large scale genome rearrangements seen in other bacteria. Recently, a single report described a large scale genome duplication that was suggested to be specific to the Beijing lineage. We report here multiple independent large-scale duplications of the same genomic region of M. tuberculosis detected through whole-genome sequencing. The duplications occur in strains belonging to both M. tuberculosis lineage 2 and 4, and are thus not limited to Beijing strains. The duplications occur in both drug-resistant and drug susceptible strains. The duplicated regions also have substantially different boundaries in different strains, indicating different originating duplication events. We further identify a smaller segmental duplication of a different genomic region of a lab strain of H37Rv. The presence of multiple independent duplications of the same genomic region suggests either instability in this region, a selective advantage conferred by the duplication, or both. The identified duplications suggest that large-scale gene duplication may be more common in M. tuberculosis than previously considered.
- ItemSystematic genetic nomenclature for type VII secretion systems(Public Library of Science, 2009) Bitter, Wilbert; Houben, Edith N. G.; Bottai, Darria; Brodin, Priscille; Brown, Eric J.; Cox, Jeffery S.; Derbyshire, Keith; Fortune, Sarah M.; Gao, Lian-Yong; Liu, Jun; Van Pittius, Nicolaas C. Gey; Pym, Alexander S.; Rubin, Eric J.; Sherman, David R.; Cole, Stewart T.; Brosch, RolandMycobacteria, such as the etiological agent of human tuberculosis, Mycobacterium tuberculosis, are protected by an impermeable cell envelope composed of an inner cytoplasmic membrane, a peptidoglycan layer, an arabinogalactan layer, and an outer membrane. This second membrane consists of covalently linked, tightly packed long-chain mycolic acids [1,2] and noncovalently bound shorter lipids involved in pathogenicity [3–5]. To ensure protein transport across this complex cell envelope, mycobacteria use various secretion pathways, such as the SecA1-mediated general secretory pathway [6,7], an alternative SecA2-operated pathway [8], a twin-arginine translocation system [9,10], and a specialized secretion pathway variously named ESAT-6-, SNM-, ESX-, or type VII secretion [11–16]. The latter pathway, hereafter referred to as type VII secretion (T7S), has recently become a large and competitive research topic that is closely linked to studies of host–pathogen interactions of M. tuberculosis [17] and other pathogenic mycobacteria [16]. Molecular details are just beginning to be revealed [18–22] showing that T7S systems are complex machineries with multiple components and multiple substrates. Despite their biological importance, there has been a lack of a clear naming policy for the components and substrates of these systems. As there are multiple paralogous T7S systems within the Mycobacteria and orthologous systems in related bacteria, we are concerned that, without a unified nomenclature system, a multitude of redundant and obscure gene names will be used that will inevitably lead to confusion and hinder future progress. In this opinion piece we will therefore propose and introduce a systematic nomenclature with guidelines for name selection of new components that will greatly facilitate communication and understanding in this rapidly developing field of research.