Browsing by Author "Van Heerden, Quintin"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- ItemA distributed simulation-optimisation system in support of goal pursuit in large-scale urban growth scenarios(Stellenbosch : Stellenbosch University, 2024-03) Van Heerden, Quintin; Van Vuuren, JH; Stellenbosch University. Faculty of Engineering. Dept. of Industrial Engineering.ENGLISH ABSTRACT: Cities are complex systems and become increasingly complex as they grow. Urbanisation has to be managed carefully so as to avoid exerting unnecessary pressure on infrastructure and not to exacerbate further any unsustainable practices, such as overcrowding or urban sprawl. Urbanisation plays an important role in achieving the sustainable development goals of the United Nations, but local planning practices have to be aligned with these goals in order to achieve them. Local planning is plagued by requirements in national directives and legislation that mandate several planning instruments, frameworks, and policies, but do not provide clear direction on how to achieve these often-grandiose goals. Moreover, municipalities are not required to test the feasibility or the potential effects of their plans before implementing them. This may be due, in part, to a lack of scientific tools capable of assisting planners in this regard. State-of-the art land-use models, which are available for this purpose, are often too complex, require large volumes of data and specialist expertise to execute them, are limited in their application, or are too involved in terms of the underlying process of setting up appropriate test scenarios. A novel, generic system for long-term land-use planning is proposed in this dissertation which combines the powerful modelling paradigm of integrated land-use transport models with optimisation algorithms in a simulation-optimisation setting. The system comprises four functional components which together facilitate the pursuit of goals in large-scale urban growth scenarios. These components are a data component, a simulation component, an optimisation component, and an interpretation component. The main objective of the data component is to guide a decision-maker systematically through the processes of data collection, curation, preparation, and storage. The simulation component facilitates the establishment and execution of an integrated land-use transport model, while urban development aspiration levels may be specified in the optimisation component, which is aimed at performing multi-objective optimisation in pursuit of these targets. The working of the optimisation component is based on the execution of a self-adaptive metaheuristic responsible for managing various perturbation operators and interacts with the simulation component. Finally, the interpretation component provides a structured approach towards the interpretation of the performance of the entire system, the performance of the metaheuristic, as well as the output results with a view to make informed decisions with respect to land-use planning. integrated land-use transport models are notorious for their long execution times and require vast amounts of data and resources. The system proposed in this dissertation, therefore, conforms to one of two possible distributed system designs in order to guide the decision-maker during the process of establishing and running such a model in a distributed manner — either making use of microservices or else implementing the system on a high-performance computing cluster. An analysis of the costs involved is also carried out so as to assist the decision-maker in selecting the most appropriate system design for his or her needs.