Browsing by Author "Van Dyk, Dewald, 1975-"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- ItemGenetic analysis of a signal transduction pathway : the regulation of invasive growth and starch degradation in Saccharomyces cerevisiae(Stellenbosch : Stellenbosch University, 2004-03) Van Dyk, Dewald, 1975-; Pretorius, I. S.; Bauer, Florian; Stellenbosch University. Faculty of Science. Dept. of Microbiology.ENGLISH ABSTRACT: Cells of the yeast Saccharomyces cerevisiae are able to change their morphological appearance in response to a variety of extracellular and intracellular signals. The processes involved in morphogenesis are well characterised in this organism, but the exact mechanism by which information emanating from the environment is integrated into the regulation of the actin cytoskeleton and the yeast cell cycle, is still not clearly understood. Considerable progress has, however, been made. The processes are investigated on various levels including: (i) the nature of the signals required to elicit a morphological adaptation, (ii) the mechanism by which these signals are perceived and transmitted to the nucleus for gene transcription regulation (signal transduction pathways), (iii) the role of the cytoskeleton, particularly actin, in morphogenesis, and (iv) the relationship between cell cycle regulators and factors required for alterations in cellular shape. The focus of this study was on elements involved in the regulation of one of these morphological processes, pseudohyphal formation, in S. cerevisiae. During pseudohyphal differentiation normal oval yeast cells become elongated and mother and daughter cells stay attached after cytokinesis to give rise to filaments. These filaments are able to penetrate the growth substrate, a phenomenon referred to as invasive growth. Actin remodelling is a prerequisite for the formation of elongated cells during pseudohyphal development and invasive growth. Its main contribution to this event is the directing of vesicles, containing cell wall constituents and enzymes, to specific sites of cell wall growth at the cell periphery. In order to fulfil this cellular function, actin is regulated on several levels. Signal transduction pathways that are activated in response to external nutritional signals play important roles in the regulation of the actin cytoskeleton during pseudohyphal differentiation. For this reason a literature review was compiled to introduce various aspects of actin-structure, the regulation of this structure and the functions actin performs during morphogenesis. The connection between signal transduction elements involved in morphological processes and actin remodelling is also reviewed. This study entailed the genetic analysis of numerous factors involved in the regulation of pseudohyphal differentiation, invasive growth and starch metabolism. Several transcriptional regulators playing a role in these phenomena were investigated. Apart from the transcription factors, which include Mss11p, Msn1p, Ste12p, F108p,Phd1p and Tec1p, additional elements ranging from transporters to G-proteins, were also investigated. Mutant strains deleted for one or more of these factors were constructed and tested to assess their abilities to form filaments that penetrate the growth substrate, and to utilise starch as a carbon source. Complex genetic relationships were observed for various combinations of these factors. Specifically, F108p,Msn1p and Ste12p were shown to act independently in controlling invasive growth and starch metabolism, suggesting that these factors are regulated by different signal transduction pathways. Mss11p, on the other hand, was found to play an indispensable role and seems to act as a downstream factor of Msn1 p, Fl08p, Ste12p and Tec1 p. The exception to this is Phd1 p, since multiple copies of PHD1 partially suppress the effect of a MSS11 deletion. The data suggests that Mss11 p functions at the confluence of several signalling pathways controlling the transcriptional regulation of genes required for invasive growth and starch degradation. Different nutritional signals were also found to differentially regulate specific signalling elements during the invasive growth response. For example, Tec1 p requires Msn1 p activity in response to growth on media containing a limited nitrogen source. This dependency, however, was absent when invasive growth was tested on glucose and starch media. Evidence was also obtained that confirmed the transcriptional co-regulation of MUC1 and STA2. MUC1 encodes a mucin-like protein that is required for invasive growth and pseudohyphal differentiation, whereas STA2 encodes a glucoamylase required for starch degradation. Unpublished results indicated that several transcriptional regulators of invasive growth also exert an effect on starch metabolism. The data generated during this study complemented and confirmed published results. It also contributed to the compilation of a more detailed model, integrating the numerous factors involved in these signalling processes.