Browsing by Author "Tshamala, Mubenga Carl"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- ItemSimulation and control implications of a high-temperature modular reactor (HTMR) cogeneration plant(Stellenbosch : Stellenbosch University, 2014-04) Tshamala, Mubenga Carl; Dobson, R. T.; Stellenbosch University. Faculty of Engineering. Dept. of Mechanical and Mechatronic Engineering.ENGLISH ABSTRACT: Traditionally nuclear reactor power plants have been optimised for electrical power generation only. In the light of the ever-rising cost of dwindling fossil fuel resources as well the global polluting effects and consequences of their usage, the use of nuclear energy for process heating is becoming increasingly attractive. In this study the use of a so-called cogeneration plant in which a nuclear reactor energy source is optimised for the simultaneous production of superheated steam for electrical power generation and process heat is considered and analysed. The process heat superheated steam is generated in a once-through steam generator of heat pipe heat exchanger with intermediate fluid while steam for power generation is generated separately in a once-through helical coil steam generator. A 750 °C, 7 MPa helium cooled HTMR has been conceptually designed to simultaneously provide steam at 540 °C, 13.5 MPa for the power unit and steam at 430 °C, 4 MPa for a coal-to-liquid fuel process. The simulation and dynamic control of such a typical cogeneration plant is considered. In particular, a theoretical model of a typical plant will be simulated with the aim of predicting the transient and dynamic behaviour of the HTMR in order to provide guideline for the control of the plant under various operating conditions. It was found that the simulation model captured the behaviour of the plant reasonably well and it is recommended that it could be used in the detailed design of plant control strategies. It was also found that using a 1500 MW-thermal HTMR the South African contribution to global pollution can be reduced by 1.58%.