Browsing by Author "Thompson, Aileen C."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemAdapting the Dragonfly Biotic Index to a katydid (Tettigoniidae) rapid assessment technique : case study of a biodiversity hotspot, the Cape Floristic Region, South Africa(Pensoft Publishers, 2017) Thompson, Aileen C.; Bazelet, Corinna S.; Naskrecki, Piotr; Samways, Michael J.Global biodiversity faces many challenges, with the conservation of invertebrates among these. South Africa is megadiverse and has three global biodiversity hotspots. The country also employs two invertebrate-based rapid assessment techniques to evaluate habitat quality of freshwater ecosystems. While grasshoppers (Acrididae) are known indicators of terrestrial habitats, katydids (Tettigoniidae) could be as well. Here, we adapt a South African freshwater invertebrate-based rapid assessment method, the Dragonfly Biotic Index (DBI), for the terrestrial katydid assemblage, and propose a new assessment approach using katydids: the Katydid Biotic Index (KBI). KBI assigns each katydid species a score based on a combination of: 1) IUCN Red List status, 2) geographic distribution, and 3) life history traits (which consist of mobility and trophic level). This means that the rarer, more localized, specialized and threatened katydid species receive the highest score, and the common, geographically widespread and Least Concern species the lowest. As a case study, we calculated KBI across one of South Africa’s global biodiversity hotspots, the Cape Floristic Region (CFR). We then correlated KBI/Site scores of individual ecosystems with their ecosystem threat scores. The CFR’s katydid assemblage did not differ significantly from that of the overall South African katydid assemblage in terms of its species traits, threat statuses, or distribution among tettigoniid subfamilies. Likewise, KBI/Site scores did not differ significantly among ecosystem threat statuses. This may be explained by the coarse spatial scale of this study or by the lack of specialization of the CFR katydid assemblage. Nevertheless, the KBI holds promise as it is a relatively simple and non-invasive technique for taking invertebrate species composition into account in an assessment of habitat quality. In regions where katydid assemblages are well-known, acoustic surveys and KBI may provide an efficient means for assessing habitats.
- ItemTesting the efficacy of global biodiversity hotspots for insect conservation : the case of South African katydids(Public Library of Science, 2016) Bazelet, Corinna S.; Thompson, Aileen C.; Naskrecki, Piotr; Guralnick, RobertThe use of endemism and vascular plants only for biodiversity hotspot delineation has long been contested. Few studies have focused on the efficacy of global biodiversity hotspots for the conservation of insects, an important, abundant, and often ignored component of biodiversity. We aimed to test five alternative diversity measures for hotspot delineation and examine the efficacy of biodiversity hotspots for conserving a non-typical target organism, South African katydids. Using a 1° fishnet grid, we delineated katydid hotspots in two ways: (1) count-based: grid cells in the top 10% of total, endemic, threatened and/or sensitive species richness; vs. (2) score-based: grid cells with a mean value in the top 10% on a scoring system which scored each species on the basis of its IUCN Red List threat status, distribution, mobility and trophic level. We then compared katydid hotspots with each other and with recognized biodiversity hotspots. Grid cells within biodiversity hotspots had significantly higher count-based and score-based diversity than non-hotspot grid cells. There was a significant association between the three types of hotspots. Of the count-based measures, endemic species richness was the best surrogate for the others. However, the score-based measure out-performed all count-based diversity measures. Species richness was the least successful surrogate of all. The strong performance of the score-based method for hotspot prediction emphasizes the importance of including species’ natural history information for conservation decision-making, and is easily adaptable to other organisms. Furthermore, these results add empirical support for the efficacy of biodiversity hotspots in conserving non-target organisms.