Browsing by Author "Stein, Lisa"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemThe Characterisation of Antibiotic Resistance Plasmids in Escherichia coli and Klebsiella pneumoniae Isolates from Hospital and Community Settings(Stellenbosch : Stellenbosch University, 2021-03) Stein, Lisa; Newton-Foot, Mae; Whitelaw, Andrew; Pienaar, Colette; Stellenbosch University. Faculty of Medicine and Health Sciences. Dept. of Pathology.ENGLISH ABSTRACT: Antimicrobial resistance has become one of the biggest challenges and threats to public health systems worldwide. Widespread distribution of resistance is commonly due to horizontal gene transfer, which includes mobile genetic elements (MGE) such as plasmids, insertion sequences, transposons, and integrons. This study aimed to characterise plasmids conferring antibiotic resistance in extended-spectrum β-lactamase (ESBL) positive Escherichia coli and Klebsiella pneumoniae isolates from bloodstream infections to determine whether ESBL and plasmid-mediated quinolone resistance (PMQR) genes were mobilised on the same plasmids and whether the same plasmids are disseminated in healthcare and community settings. Methods Illumina MiSeq whole-genome sequencing (WGS) was previously performed on 112 E. coli and 66 K. pneumoniae isolates from blood cultures submitted to the National Health Laboratory Service Microbiology Laboratory at Tygerberg Hospital during 2017 and 2018. Assembled genomes were interrogated for the presence of ESBL and PMQR genes and plasmid replicon types. Based on the results, eight E. coli and nine K. pneumoniae isolates were selected for plasmid sequencing on the Oxford Nanopore Technologies MinION platform. Unicycler assembler was used for hybrid assembly of Illumina short-reads and Nanopore plasmid long-reads. In silico analyses were performed using ResFinder, PlasmidFinder and ISsaga to identify ESBL and PMQR genes, plasmid replicon types, and MGEs. Results Based on Illumina WGS, the ESBL and PMQR containing isolates contained multiple resistance genes and IncF plasmid replicons, individually or in combination with additional plasmid types. The IncF replicons and resistance genes were on separate contigs, therefore associations between different IncF replicons and with resistance genes could not be confirmed. Nanopore sequencing resolved plasmids from several E. coli and K. pneumoniae isolates; however, chromosomal genes could not be visualised and misassembly resulted in fragmented plasmids. Hybrid assembly fully resolved plasmids and chromosomal genes in several E. coli and K. pneumoniae isolates. Amongst the E. coli isolates, three F-type multireplicon plasmids and two single replicon plasmids IncI1-γ and IncB/O/K/Z, which contained resistance genes, were described. Novel multireplicon plasmid FII(FIC)-FIB-X was detected and harboured ESBL blaTEM-135 and PMQR qnrS1. The blaCTX-M genes were confirmed to be chromosomally located in three E. coli isolates and plasmid-mediated on F-type plasmids in two E. coli isolates. K. pneumoniae isolates harboured single replicon F-type plasmids, multireplicon FIB-HI1B fusion plasmids, and a single replicon IncC plasmid. The FIB-HI1B plasmids were associated with blaCTX-M-15, aac(6’)-Ib-cr, and qnrS1. The blaCTX-M-15 was plasmid-mediated in all K. pneumoniae isolates. Conclusion Amongst the E. coli isolates, ESBL and PMQR genes were present both on the same plasmid and on separate plasmids. In K. pneumoniae, ESBLs and PMQRs were found collectively on the same plasmids, and the F-type plasmids harbouring ESBL and PMQR genes differed from those in E. coli. As only two community-acquired K. pneumoniae isolates were selected for Nanopore plasmid sequencing, conclusions regarding the dissemination of K. pneumoniae plasmids in healthcare and community settings could not be made. Plasmids of the same FAB-types were detected amongst E. coli isolates of various sequence types and from both hospital- and community-settings, which is indicative of spread between these settings.
- ItemCharacterisation of mcr-4.3 in a colistin-resistant Acinetobacter nosocomialis clinical isolate from Cape Town, South Africa(Elsevier, 2021) Snyman, Yolandi; Reuter, Sandra; Whitelaw, Andrew Christopher; Stein, Lisa; Maloba, Motlatji Reratilwe Bonnie; Newton-Foot, MaeObjectives: Colistin resistance in Acinetobacter spp. is increasing, resulting in potentially untreatable noso- comial infections. Plasmid-mediated colistin resistance is of particular concern due to its low fitness cost and potential transferability to other bacterial strains and species. This study investigated the colistin resistance mechanism in a clinical Acinetobacter nosocomialis isolate from Cape Town, South Africa. Methods: A colistin-resistant A. nosocomialis isolate was identified from a blood culture in 2017. PCR and Illumina whole-genome sequencing (WGS) were performed to identify genes and mutations conferring resistance to colistin. Plasmid sequencing was performed on an Oxford Nanopore platform. mcr function- ality was assessed by broth microdilution after cloning the mcr gene into pET-48b( + ) and expressing it in SHuffle®T7 Escherichia coli and after curing the plasmid using 62.5 mg/L acridine orange. Results: The colistin minimum inhibitory concentration (MIC) of the A. nosocomialis isolate was 16 mg/L. The mcr-4.3 gene was detected by PCR and WGS. No other previously described colistin resistance mech- anism was found by WGS. The mcr-4.3 gene was identified on a 24 024-bp RepB plasmid (pCAC13a). Functionality studies showed that recombinant mcr-4.3 did not confer colistin resistance in E. coli. How- ever, plasmid curing of pCAC13a restored colistin susceptibility in A. nosocomialis . Conclusion: We describe the first detection of a plasmid-mediated mcr-4.3 gene encoding colistin re- sistance in A. nosocomialis and the first detection of mcr-4.3 in a clinical isolate in Africa. Recombinant expression of mcr-4.3 did not confer colistin resistance in E. coli , suggesting that its functionality may be RepB plasmid-dependent or species-specific.