Browsing by Author "Slabbert, Etienne"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- ItemDiverse exopolysaccharide producing bacteria isolated from milled sugarcane : implications for cane spoilage and sucrose yield(Public Library of Science, 2015) Hector, Stanton; Willard, Kyle; Bauer, Rolene; Mulako, Inonge; Slabbert, Etienne; Kossmann, Jens; George, Gavin M.Bacterial deterioration of sugarcane during harvesting and processing is correlated with significant loss of sucrose yield and the accumulation of bacterial polysaccharides. Dextran, a homoglucan produced by Leuconostoc mesenteroides, has been cited as the primary polysaccharide associated with sugarcane deterioration. A culture-based approach was used to isolate extracellular polysaccharide (EPS) producing bacterial strains from milled sugarcane stalks. Ribosomal RNA sequencing analysis grouped 25 isolates into 4 genera. This study identified 2 bacterial genera not previously associated with EPS production or sucrose degradation. All isolates produced polysaccharide when grown in the presence of sucrose. Monosaccharide analysis of purified polymers by Gas Chromatography revealed 17 EPSs consisting solely of glucose (homoglucans), while the remainder contained traces of mannose or fructose. Dextranase treatment of polysaccharides yielded full digestion profiles for only 11 extracts. Incomplete hydrolysis profiles of the remaining polysaccharides suggest the release of longer oligosaccharides which may interfere with sucrose crystal formation.
- ItemMicrobial diversity of soils of the Sand fynbos(Stellenbosch : Stellenbosch University, 2008-12) Slabbert, Etienne; Jacobs, Karin; Stellenbosch University. Faculty of Science. Dept. of Microbiology.The soil environment is thought to contain a lot of the earth’s undiscovered biodiversity. The aim of this study was to understand the extent of microbial diversity in the unique ecosystem of the Western Cape’s fynbos biome. It is known that many processes give rise to this immense microbial diversity in soil. In addition the aim was to link microbial diversity with the soils physio-chemical properties as well as the plant community’s structure. Molecular methods especially automated ribosomal intergenic spacer analysis (ARISA) was used in the study. The most important property of environmental DNA intended for molecular ecology studies and other downstream applications is purity from humic acids and phenolic compounds. These compounds act as PCR inhibitors and need to be removed during the DNA extraction protocol. The fist goal in the study was to develop an effective DNA extraction protocol by using cationic locculation of humic acids. The combination of cationic flocculation with CuCl2 and the addition of PVPP and KCl resulted in a high yield of DNA, suitable for PCR amplification with bacterial and fungal specific primers. Determining the reproducibility and accuracy of ARISA and ARISA-PCR was important because these factors have an important influence on the results and effectiveness of these techniques. Primer sets for automated ribosomal intergenic spacer analysis, ITS4/ITS5, were assessed for the characterization of the fungal communities in the fynbos soil. The primer set delivered reproducible ARISA profiles for the fungal community composition with little variation observed between ARISAPCR’s. ARISA proved useful for the assessment and comparison of fungal diversity in ecological samples. The soil community composition of both fungal and bacterial groups in the Sand fynbos was characterized. Soil from 4 different Sand fynbos sites was compared to investigate diversity of eubacterial and fungal groups at the local as well as a the landscape scale. A molecular approach was used for the isolation of total soil genetic DNA. The 16S-23S intergenic spacer region from the bacterial rRNA operon was amplified when performing bacterial ARISA from total soil community DNA (BARISA). Correspondingly, the internal transcribed spacers, ITS1, ITS2 and the 5.8S rRNA gene from the fungal rRNA operon were amplified when undertaking fungal ARISA (F-ARISA). The community structure from different samples and sites were statistically analysed. ARISA data was used to evaluate different species accumulation and estimation models for fungal and bacterial communities and to predict the total community richness. Diversity, evenness and dominance were the microbial communities were used to describe the extent of microbial iversity of the fynbos soils. The spatial ordination of the bacterial and fungal species richness and diversity was considered by determining the species area relationship and beta diversity of both communities. The correlation between the soil physio-chemical properties was determined. The plant community structure data was correlated with the fungal and the bacterial community structure. The results indicated that bacterial species numbers and diversity were continually higher at the local scale. Fungi however showed higher species turnover at the landscape scale. Bacterial community structure showed stronger links to the plant community structure whereas the fungi community structure conformed to spatial separation patterns. To further investigate the diversity of soil microbes the potential of genus specific primes was investigated. The genus Penicillium is widespread in the soil environment and the extent of its diversity and distribution is however not. For this reason Penicillium was chosen as a model organism. To expand the insight into the diversity of Penicillium species in the fynbos soil ecosystem, a rapid group specific molecular approach would be useful. Penicillium specific primers targeting the 18S rRNA ITS gene region were evaluated. Fungal specific primers ITS4 and ITS5, targeting the internal transcribed region (ITS) were used to target Penicillium specific in the soil sample. Nested PCR, using primer Pen-10 and ITS5, was then utilized to target Penicillium species specifically. The discrimination of Penicillium species was possible due to length heterogeneity of this gene region. Eight different peaks was detected in the soil sample with ARISA and eight different species could be isolated on growth media. The technique proved useful for the detection and quantification of Penicillium species in the soil.
- ItemOptimization of automated ribosomal intergenic spacer analysis for the estimation of microbial diversity in fynbos soil(Academy of Science of South Africa -- ASSAF, 2010-08) Slabbert, Etienne; Van Heerden, Carel J.; Jacobs, KarinAutomated ribosomal intergenic spacer analysis (ARISA) has become a commonly used molecular technique for the study of microbial populations in environmental samples. The reproducibility and accuracy of ARISA, with and without the polymerase chain reaction (PCR) are important aspects that influence the results and effectiveness of these techniques. We used the primer set ITS4/ITS5 for ARISA to assess the fungal community composition of two sites situated in the Sand Fynbos. The primer set proved to deliver reproducible ARISA profiles of the fungal community composition with little variation observed between ARISA-PCRs. Variation that occurred in a sample due to repeated DNA extraction is expected for ecological studies. This reproducibility made ARISA a useful tool for the assessment and comparison of diversity in ecological samples. In this paper, we also offered particular suggestions concerning the binning strategy for the analysis of ARISA profiles.
- ItemThe soil bacterial communities of South African fynbos riparian ecosystems invaded by Australian Acacia species(PLoS, 2014-01-24) Slabbert, Etienne; Jacobs, Shayne Martin; Jacobs, KarinRiparian ecosystem along rivers and streams are characterised by lateral and longitudinal ecological gradients and, as a result, harbour unique biodiversity. Riparian ecosystems in the fynbos of the Western Cape, South Africa, are characterised by seasonal dynamics, with summer droughts followed by high flows during winter. The unique hydrology and geomorphology of riparian ecosystems play an important role in shaping these ecosystems. The riparian vegetation in the Western Cape has, however, largely been degraded due to the invasion of non-indigenous plants, in particular Acacia mearnsii, A. saligna and A. dealbata. This study investigated the effect of hydrology and invasion on the bacterial communities associated with fynbos riparian ecosystems. Bacterial communities were characterised with automated ribosomal intergenic spacer analysis (ARISA) and 454 16S rDNA pyrosequencing. Chemical and physical properties of soil within sites were also determined and correlated with community data. Sectioning across the lateral zones revealed significant differences in community composition, and the specific bacterial taxa influenced. Results also showed that the bacterial community structure could be linked to Acacia invasion. The presence of invasive Acacia was correlated with specific bacterial phyla. However, high similarity between cleared and pristine sites suggests that the effect of Acacia on the soil bacterial community structure may not be permanent. This study demonstrates how soil bacterial communities are influenced by hydrological gradients associated with riparian ecosystems and the impact of Acacia invasion on these communities.