Browsing by Author "Sithole, M. A."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemFirst candidates for γ vibrational bands built on the [505]11/2– neutron orbital in odd-A Dy isotopes(American Physical Society, 2020-05-10) Majola, S. N. T.; Sithole, M. A.; Mdletshe, L.; Hartley, D.; Timar, J.; Nyako, B. M.; Allmond, J. M.; Bark, R. A.; Beausang, C.; Bianco, L.; Bucher, T. D.; Bvumbi, S. P.; Carpenter, M.P.; Chiara, C. J.; Cooper, N.; Cullen, D. M.; Curien, D.; Dinoko, T. S.; Gall, B. J. P.; Garrett, P. E.; Greenlees, P. T.; Hirvonen, J; Jakobsson, U.; Jones, P. M.; Julin, R.; Juutinen, S.; Ketelhut, S.; Kheswa, B. V.; Kondev, F.G.; Korichi, A.; Kulp, W.D.; Lauritsen, T.; Lawrie, E. A.; Makhathini, L.; Masiteng, P. L.; Maqabuka, B.; McCutchan, E.A.; Miller, D.; Miller, S.; Minkova, A.; Msebi, L.; Mthembu, S. H.; Ndayishimye, J.; Nieminen, P.; Ngcobo, P. Z.; Ntshangase, S. S.; Orce, J. N.; Peura, P.; Rahkila, P.; Redon, N.; Riedinger, L. L.; Riley, M. A.; Roux, D. G.; Ruotsalainen, P.; Piot, J.; Saren, J.; Sharpey-Schafer, J. F.; Scholey, C.; Shirinda, O.; Simpson, J.; Sorri, J.; Stefanescu, I.; Stolze, S.; Uusitalo, J.; Wang, X.; Werner, V.; Wood, J.L; Yu, C-H.; Zhu, S.; Zimba, G.Rotational structures have been measured using the Jurogam II and GAMMASPHERE arrays at low spin following the 155Gd(α,2n)157Dy and 148Nd(12C, 5n)155Dy reactions at 25 and 65 MeV, respectively. We report high-K bands, which are conjectured to be the first candidates of a Kπ= 2+ γ vibrational band, built on the [505]11/2– neutron orbital, in both odd-A 155, 157Dy isotopes. The coupling of the first excited K=0+ states or the so-called β vibrational bands at 661 and 676 keV in 154Dy and 156Dy to the [505]11/2– orbital, to produce a Kπ=11/2- band, was not observed in both 155Dy and 157Dy, respectively. The implication of these findings on the interpretation of the first excited 0+ states in the core nuclei 154Dy and 156Dy are also discussed.
- Itemβ and γ bands in N = 88 , 90, and 92 isotones investigated with a five-dimensional collective Hamiltonian based on covariant density functional theory : vibrations, shape coexistence, and superdeformation(American Physical Society, 2019-06-05) Majola, S. N. T.; Shi, Z.; Song, B. Y.; Li, Z. P.; Zhang, S. Q.; Bark, R. A.; Sharpey-Schafer, J. F.; Aschman, D. G.; Bvumbi, S. P.; Bucher, T. D.; Cullen, D. M.; Dinoko, T. S.; Easton, J. E.; Erasmus, N.; Greenlees, P. T.; Hartley, D. J.; Hirvonen, J.; Korichi, A.; Jakobsson, U.; Jones, P.; Jongile, S.; Julin, R.; Juutinen, S.; Ketelhut, S.; Kheswa, B. V.; Khumalo, N. A.; Lawrie, E. A.; Lawrie, J. J.; Lindsay, R.; Madiba, T. E.; Makhathini, L.; Maliage, S. M.; Maqabuka, B.; Malatji, K. L.; Masiteng, P. L.; Mashita, P. I.; Mdletshe, L.; Minkova, A.; Msebi, L.; Mullins, S. M.; Ndayishimye, J.; Negi, D.; Netshiya, A.; Newman, R.; Ntshangase, S. S.; Ntshodu, R.; Msebi, L.; Mullins, S. M.; Ndayishimye, J.; Negi, D.; Netshiya, A.; Newman, R.; Ntshangase, S. S.; Ntshodu, R.; Nyako, B. M.; Papka, P.; Peura, P.; Rahkila, P.; Riedinger, L. L.; Riley, M. A.; Roux, D. G.; Ruotsalainen, P.; Saren, J. J.; Scholey, C.; Shirinda, O.; Sithole, M. A.; Sorri, J.; Stankiewicz, M.; Stolze, S.; Timar, J.; Uusitalo, J.; Vymers, P. A.; Wiedeking, M.; Zimba, G. L.A comprehensive systematic study is made for the collective β and γ bands in even-even isotopes with neutron numbers N = 88 to 92 and proton numbers Z = 62 (Sm) to 70 (Yb). Data, including excitation energies, B(E0) and B(E2) values, and branching ratios from previously published experiments are collated with new data presented for the first time in this study. The experimental data are compared to calculations using a five-dimensional collective Hamiltonian (5DCH) based on the covariant density functional theory (CDFT). A realistic potential in the quadrupole shape parameters V (β,γ ) is determined from potential energy surfaces (PES) calculated using the CDFT. The parameters of the 5DCH are fixed and contained within the CDFT. Overall, a satisfactory agreement is found between the data and the calculations. In line with the energy staggering S(I) of the levels in the 2γ + bands, the potential energy surfaces of the CDFT calculations indicate γ -soft shapes in the N = 88 nuclides, which become γ rigid for N = 90 and N = 92. The nature of the 02 + bands changes with atomic number. In the isotopes of Sm to Dy, they can be understood as β vibrations, but in the Er and Yb isotopes the 02 + bands have wave functions with large components in a triaxial superdeformed minimum. In the vicinity of 152Sm, the present calculations predict a soft potential in the β direction but do not find two coexisting minima. This is reminiscent of 152Sm exhibiting an X(5) behavior. The model also predicts that the 03 + bands are of two-phonon nature, having an energy twice that of the 02 + band. This is in contradiction with the data and implies that other excitation modes must be invoked to explain their origin.