Browsing by Author "Shi, Peijian"
Now showing 1 - 11 of 11
Results Per Page
Sort Options
- ItemDoes the law of diminishing returns in leaf scaling apply to vines? - Evidence from 12 species of climbing plants(Elsevier, 2019) Shi, Peijian; Li, Yirong; Hui, Cang; Ratkowsky, David A.; Yu, Xiaojing; Niinemets, UloENGLISH ABSTRACT: Shapes, sizes and biomass investment per unit area (LMA) of vine leaves are characterized by high diversity that results in variation in leaf arrangement, light harvesting efficiency and photosynthetic activity. There exists a scaling relationship between leaf dry mass and surface area for many broad-leaved plants, and most estimates of the scaling exponent are greater than unity, implying that they follow the "law of diminishing returns", i.e. that larger leaves require progressively greater investments of dry mass and accordingly have a greater LMA. Previous studies have primarily focused on trees and crops and there are few data available for vines. Yet, as vines have lower support investments in stems than self-supporting plants, they can have larger biomass investments in support within the leaves and stronger rise of biomass costs with increasing leaf area. In this study, we chose twelve species of vines (five woody vines and seven herbaceous vines) to investigate the following scientific questions: (i) whether there are significant differences in LMA between woody and herbaceous vines, (ii) whether leaf dry mass and surface area scaling relationships show evidence of diminishing returns in vines. We observed that LMA values of woody vines were significantly higher than those of the herbaceous vines. Leaf dry mass vs. surface area scaling relationship followed the law of diminishing returns in all 12 studied vine species. The existence of diminishing returns indicates that there is a trade-off between leaf surface area expansion and the energy investment for vines to support leaf physical structures. (C) 2019 The Authors. Published by Elsevier B.V.
- ItemEffects of salt stress on the leaf shape and scaling of pyrus betulifolia bunge(MDPI, 2019) Yu, Xiaojing; Shi, Peijian; Hui, Cang; Miao, Lifei; Liu, Changlai; Zhang, Qiuyue; Feng, ChaonianLeaf shape can reflect the survival and development of plants in different environments. In particular, leaf area, showing a scaling relationship with other leaf-shape indices, has been used to evaluate the extent of salt stress on plants. Based on the scaling relationships between leaf area and other leaf-shape indices in experiments at different levels of salt stress, we could examine which leaf-shape indices are also related to salt stress. In the present study, we explored the effects of different salt concentration treatments on leaf dry mass per unit area (LMA), the quotient of leaf perimeter and leaf area (QPA), the quotient of leaf width and length (QWL), the areal quotient (AQ) of left and right sides of a leaf and the standardized index (SI) for bilateral symmetry. We treated Pyrus betulifolia Bunge under NaCl salt solution of 2‰, 4‰ and 6‰, respectively, with fresh water with no salt as the control. The reduced major axis (RMA) was used to fit a linear relationship of the log-transformed data between any leaf trait measures and leaf area. We found that leaf fresh weight and dry weight decrease with salt concentration increasing, whereas the exponents of leaf dry weight versus leaf area exhibit an increasing trend, which implies that the leaves expanding in higher salt environments are prone to have a higher cost of dry mass investment to increase per unit leaf area than those in lower salt environments. Salt concentration has a significant influence on leaf shape especially QWL, and QWL under 6‰ concentration treatment is significantly greater than the other treatments. However, there is no a single increasing or decreasing trend for the extent of leaf bilateral symmetry with salt concentration increasing. In addition, we found that the scaling exponents of QPA versus leaf area for four treatments have no significant difference. It indicates that the scaling relationship of leaf perimeter versus leaf area did not change with salt concentration increasing. The present study suggests that salt stress can change leaf functional traits especially the scaling relationship of leaf dry weight versus leaf area and QWL, however, it does not significantly affect the scaling relationships between leaf morphological measures (including QPA and the extent of leaf bilateral symmetry) and leaf area.
- ItemA geometrical model for testing bilateral symmetry of bamboo leaf with a simplified Gielis equation(Wiley Open Access, 2016) Lin, Shuyan; Zhang, Li; Reddy, Gadi V. P.; Hui, Cang; Gielis, Johan; Ding, Yulong; Shi, PeijianThe size and shape of plant leaves change with growth, and an accurate description of leaf shape is crucial for describing plant morphogenesis and development. Bilateral symmetry, which has been widely observed but poorly examined, occurs in both dicot and monocot leaves, including all nominated bamboo species (approximately 1,300 species), of which at least 500 are found in China. Although there are apparent differences in leaf size among bamboo species due to genetic and environmental profiles, bamboo leaves have bilateral symmetry with parallel venation and appear similar across species. Here, we investigate whether the shape of bamboo leaves can be accurately described by a simplified Gielis equation, which consists of only two parameters (leaf length and shape) and produces a perfect bilateral shape. To test the applicability of this equation and the occurrence of bilateral symmetry, we first measured the leaf length of 42 bamboo species, examining >500 leaves per species. We then scanned 30 leaves per species that had approximately the same length as the median leaf length for that species. The leaf-shape data from scanned profiles were fitted to the simplified Gielis equation. Results confirmed that the equation fits the leaf-shape data extremely well, with the coefficients of determination being 0.995 on average. We further demonstrated the bilateral symmetry of bamboo leaves, with a clearly defined leaf-shape parameter of all 42 bamboo species investigated ranging from 0.02 to 0.1. This results in a simple and reliable tool for precise determination of bamboo species, with applications in forestry, ecology, and taxonomy.
- ItemInfluence of the physical dimension of leaf size measures on the goodness of fit for Taylor's power law using 101 bamboo taxa(Elsevier, 2019) Shi, Peijian; Zhao, Lei; Ratkowsky, David A.; Niklas, Karl J.; Huang, Weiwei; Lin, Shuyan; Ding, Yulong; Hui, Cang; Li, Bai-LianENGLISH ABSTRACT: The mean and variance of ecological measures usually follow a power-law relationship, referred to as Taylor's power law (TPL). Leaves are important organs for photosynthesis, and leaf size is closely related to photosynthetic potential. Leaf size has different physical measures, such as leaf length, area, and fresh or dry weight. However, it has not been reported whether these leaf size measures follow TPL and whether the estimates of the TPL exponent reflect basic topological constraints. Considering that the variation of leaf size can affect the photosynthetic capacity of leaves and plant competitive abilities in communities, we examined the effects of different physical dimensions of leaf size (including leaf length, area, and fresh and dry weight) on the estimate of the scaling exponent and the goodness of fit of TPL for 101 bamboo species, varieties, forms, and cultivars, using 90-100 leaves for each type of plant. All leaf size measures follow TPL. However, the goodness of fit increases with the physical dimension of the leaf size measure (e.g., from 1D leaf length to 3D leaf weight). Interestingly, no significant differences in the estimates of the TPL exponent were detected among any of the physical dimensions (1D to 3D) because the 95% confidence intervals of the differences between any two groups of bootstrap replicates of the exponents of TPL obtained from different leaf size measures did not include 0. In other words, the TPL exponents of leaf size measures from the different physical dimensions could be deemed identical. We found that leaf dry weight provides the best fit of TPL and the most reliable estimate of the exponent among the four leaf size measures used in this study, perhaps because it is the best representative of the energy allocated to individual leaves.
- ItemLeaf bilateral symmetry and the scaling of the perimeter vs. the surface area in 15 vine species(2020-02-23) Shi, Peijian; Niinemets, Ulo; Hui, Cang; Niklas, Karl J.; Yu, Xiaojing; Holscher, DirkThe leaves of vines exhibit a high degree of variability in shape, from simple oval to highly dissected palmatifid leaves. However, little is known about the extent of leaf bilateral symmetry in vines, how leaf perimeter scales with leaf surface area, and how this relationship depends on leaf shape. We studied 15 species of vines and calculated (i) the areal ratio (AR) of both sides of the lamina per leaf, (ii) the standardized symmetry index (SI) to estimate the deviation from leaf bilateral symmetry, and (iii) the dissection index (DI) to measure leaf-shape complexity. In addition, we examined whether there is a scaling relationship between leaf perimeter and area for each species. A total of 14 out of 15 species had no significant differences in average ln(AR), and mean ln(AR) approximated zero, indicating that the areas of the two lamina sides tended to be equal. Nevertheless, SI values among the 15 species had significant differences. A statistically strong scaling relationship between leaf perimeter and area was observed for each species, and the scaling exponents of 12 out of 15 species fell in the range of 0.49-0.55. These data show that vines tend to generate a similar number of left- and right-skewed leaves, which might contribute to optimizing light interception. Weaker scaling relationships between leaf perimeter and area were associated with a greater DI and a greater variation in DI. Thus, DI provides a useful measure of the degree of the complexity of leaf outline.
- ItemLeaf fresh weight versus dry weight : which is better for describing the scaling relationship between leaf biomass and leaf area for broad-leaved plants(MDPI, 2019-02-13) Huang, Weiwei; Ratkowsky, David A.; Hui, Cang; Wang, Ping; Su, Jialu; Shi, PeijianLeaf dry mass per unit area (LMA) is considered to represent the photosynthetic capacity, which actually implies a hypothesis that foliar water mass (leaf fresh weight minus leaf dry weight) is proportional to leaf dry weight during leaf growth. However, relevant studies demonstrated that foliar water mass disproportionately increases with increasing leaf dry weight. Although scaling relationships of leaf dry weight vs. leaf area for many plants were investigated, few studies compared the scaling relationship based on leaf dry weight with that based on leaf fresh weight. In this study, we used the data of three families (Lauraceae, Oleaceae, and Poaceae, subfamily Bambusoideae) with five broad-leaved species for each family to examine whether using different measures for leaf biomass (i.e., dry weight and fresh weight) can result in different fitted results for the scaling relationship between leaf biomass and area. Reduced major axis regression was used to fit the log-transformed data of leaf biomass and area, and the bootstrap percentile method was used to test the significance of the difference between the estimate of the scaling exponent of leaf dry weight vs. area and that of leaf fresh weight vs. area. We found that there were five species across three families (Phoebe sheareri (Hemsl.) Gamble, Forsythia viridissima Lindl., Osmanthus fragrans Lour., Chimonobambusa sichuanensis (T.P. Yi) T.H.Wen, and Hibanobambusa tranquillans f. shiroshima H. Okamura) whose estimates of the scaling exponent of leaf dry weight to area and that of leaf fresh weight to area were not significantly different, whereas, for the remaining ten species, both estimates were significantly different. For the species in the same family whose leaf shape is narrow (i.e., a low ratio of leaf width to length) the estimates of two scaling exponents are prone to having a significant difference. There is also an allometric relationship between leaf dry weight and fresh weight, which means that foliar water mass disproportionately increases with increased leaf dry weight. In addition, the goodness of fit for the scaling relationship of leaf fresh weight vs. area is better than that for leaf dry weight vs. area, which suggests that leaf fresh mass might be more able to reflect the physiological functions of leaves associated with photosynthesis and respiration than leaf dry mass. The above conclusions are based on 15 broad-leaved species, although we believe that those conclusions may be potentially extended to other plants with broad and flat leaves.
- ItemLeaf shape influences the scaling of leaf dry mass vs. area : a test case using bamboos(Springer, 2020-01-21) Lin, Shuyan; Niklas, Karl J.; Wan, Yawen; Holscher, Dirk; Hui, Cang; Ding, Yulong; Shi, PeijianKey message A highly significant and positive scaling relationship between bamboo leaf dry mass and leaf surface area was observed; leaf shape (here, represented by the quotient of leaf width and length) had a significant influence on the scaling exponent of leaf dry mass vs. area. Context The scaling of leaf dry mass vs. leaf area is important for understanding how plants effectively intercept sunlight and invest carbon to do so. However, comparatively few, if any, studies have focused on whether leaf shape influences this scaling relationship. Aims In order to explore the effects of leaf shape on the scaling relationship between leaf dry mass and area, we examined 101 species, varieties, forms, and cultivars of bamboo growing in China and identified the relationship between the scaling exponent of leaf dry mass vs. area and leaf shape. This taxon was used because its leaf shape is conserved across species and, therefore, easily quantified. Methods Ten thousand and forty-five leaves from 101 bamboo species, varieties, forms, and cultivars growing in China were collected, and leaf dry mass, the quotient of leaf width and length, leaf area, and leaf dry mass per unit area were measured. The effect of leaf shape that can be easily quantified using the quotient of leaf width and length on the relevant and ecologically important scaling exponents was explored using this data base. Results Leaf dry mass and area differed significantly across bamboo genera, and even within the same genus. However, a statistically robust log-log linear and positive scaling relationship was observed for mass and area with a 1.115 scaling exponent (95% CI = 1.107, 1.122; r(2) = 0.907). Leaf shape had a significant influence on the numerical values of the scaling exponent of leaf dry mass vs. area. When the median of the quotient of leaf width and length was below 0.125, the numerical value of the scaling exponent increased with increasing quotient of leaf width and length. When the median of the quotient of leaf width and length was above 0.125, the scaling exponent numerically decreased toward 1.0. Conclusion We show, for the first time, that a significant relationship exists between leaf shape and the numerical values of scaling exponents governing the scaling of leaf dry mass with respect to leaf area. In addition, we show that with the quotient of leaf width and length increasing mean LMA increases, which implies a negative correlation between mean LMA and the estimated exponent of leaf dry mass vs. area for the grouped data based on the sorted quotients of leaf width and length.
- ItemScaling relationships between leaf shape and area of 12 rosaceae species(MDPI, 2019) Yu, Xiaojing; Hui, Cang; Sandhu, Hardev S.; Lin, Zhiyi; Shi, PeijianLeaf surface area (A) and leaf shape have been demonstrated to be closely correlated with photosynthetic rates. The scaling relationship between leaf biomass (both dry weight and fresh weight) and A has been widely studied. However, few studies have focused on the scaling relationship between leaf shape and A. Here, using more than 3600 leaves from 12 Rosaceae species, we examined the relationships of the leaf-shape indices including the left to right side leaf surface area ratio (AR), the ratio of leaf perimeter to leaf surface area (RPA), and the ratio of leaf width to length (RWL) versus A. We also tested whether there is a scaling relationship between leaf dry weight and A, and between PRA and A. There was no significant correlation between AR and A for each of the 12 species. Leaf area was also found to be independent of RWL because leaf width remained proportional to leaf length across the 12 species. However, there was a negative correlation between RPA and A. The scaling relationship between RPA and A held for each species, and the estimated scaling exponent of RPA versus A approached −1/2; the scaling relationship between leaf dry weight and A also held for each species, and 11 out of the 12 estimated scaling exponents of leaf dry weight versus A were greater than unity. Our results indicated that leaf surface area has a strong scaling relationship with leaf perimeter and also with leaf dry weight but has no relationship with leaf symmetry or RWL. Additionally, our results showed that leaf dry weight per unit area, which is usually associated with the photosynthetic capacity of plants, increases with an increasing A because the scaling exponent of leaf dry weight versus A is greater than unity. This suggests that a large leaf surface area requires more dry mass input to support the physical structure of the leaf.
- ItemThe seesaw effect of winter temperature change on the recruitment of cotton bollworms Helicoverpa armigera through mismatched phenology(John Wiley & Sons Ltd., 2015) Reddy, Gadi V. P.; Shi, Peijian; Hui, Cang; Cheng, Xiaofei; Ouyang, Fang; Ge, FengKnowing how climate change affects the population dynamics of insect pests is critical for the future of integrated pest management. Rising winter temperatures from global warming can drive increases in outbreaks of some agricultural pests. In contrast, here we propose an alternative hypothesis that both extremely cold and warm winters can mismatch the timing between the eclosion of overwintering pests and the flowering of key host plants. As host plants normally need higher effective cumulative temperatures for flowering than insects need for eclosion, changes in flowering time will be less dramatic than changes in eclosion time, leading to a mismatch of phenology on either side of the optimal winter temperature. We term this the “seesaw effect.” Using a long-term dataset of the Old World cotton bollworm Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) in northern China, we tested this seesaw hypothesis by running a generalized additive model for the effects of the third generation moth in the preceding year, the winter air temperature, the number of winter days below a critical temperature and cumulative precipitation during winter on the demography of the overwintering moth. Results confirmed the existence of the seesaw effect of winter temperature change on overwintering populations. Pest management should therefore consider the indirect effect of changing crop phenology (whether due to greenhouse cultivation or to climate change) on pest outbreaks. As arthropods from mid- and high latitudes are actually living in a cooler thermal environment than their physiological optimum in contrast to species from lower latitudes, the effects of rising winter temperatures on the population dynamics of arthropods in the different latitudinal zones should be considered separately. The seesaw effect makes it more difficult to predict the average long-term population dynamics of insect pests at high latitudes due to the potential sharp changes in annual growth rates from fluctuating minimum winter temperatures.
- ItemSpatial segregation facilitates the coexistence of tree species in temperate forests(MDPI, 2018) Shi, Peijian; Gao, Jie; Song, Zhaopeng; Liu, Yanhong; Hui, CangCompetition between plants has an important role during the natural succession of forest communities. Niche separation between plants can reduce such interspecific competition and enable multispecies plant to achieve coexistence, although this proposition has rarely been supported in experiments. Plant competition can be captured by spatial segregation of the competing species to avoid fierce direct conflicts for nutrients and light. We investigated a site of 400 m × 1000 m in Beijing Pine Mountain National Nature Reserve that was established for protecting Chinese pine and some rare fungi. Six dominant tree species (Fraxinus chinensis Roxb., Syringa reticulata (Blume) H. Hara var. amurensis (Rupr.) J. S. Pringle, Quercus mongolica Fisch. ex Ledeb., Armeniaca sibirica (L.) Lam., Pinus tabuliformis Carrière, and Ulmus pumila L.) were individually marked. Metrics of spatial segregation, based on the theory of spatial point process, were calculated to detect spatial competition. The corresponding type (species)-specific probabilities and the p-values from a spatially implicit test revealed significant overall spatial segregation between the six tree species. We further used the cross-type L-function to check the spatial correlation between Chinese pine and the other tree species, and detected a significant spatial repulsion relationship with four other tree species. Our study shows that each of the six dominant tree species occupies a different subarea in the landscape to effectively reduce direct spatial competition. We thus argue that patchy distributions of different tree species could be common in late forest community succession, and the coexistence of plants could be maintained over a large spatial scale. Management intervention, such as thinning the densities of dominant tree species, could be used to foster species coexistence and ensure the productivity of commercial stands.
- ItemWhy does not the leaf weight-area allometry of bamboos follow the 3/2-power law?(Frontiers Media, 2018) Lin, Shuyan; Shao, Lijuan; Hui, Cang; Song, Yu; Reddy, Gadi V. P.; Gielis, Johan; Li, Fang; Ding, Yulong; Wei, Qiang; Shi, PeijianThe principle of similarity (Thompson, 1917) states that the weight of an organism follows the 3/2-power law of its surface area and is proportional to its volume on the condition that the density is constant. However, the allometric relationship between leaf weight and leaf area has been reported to greatly deviate from the 3/2-power law, with the irregularity of leaf density largely ignored for explaining this deviation. Here, we choose 11 bamboo species to explore the allometric relationships among leaf area (A), density (ρ), length (L), thickness (T), and weight (W). Because the edge of a bamboo leaf follows a simplified two-parameter Gielis equation, we could show that A ∝ L2 and that A ∝ T2. This then allowed us to derive the density-thickness allometry ρ ∝ Tb and the weight-area allometry W ∝ A(b+3)/2 ≈ A9/8, where b approximates −3/4. Leaf density is strikingly negatively associated with leaf thickness, and it is this inverse relationship that results in the weight-area allometry to deviate from the 3/2-power law. In conclusion, although plants are prone to invest less dry mass and thus produce thinner leaves when the leaf area is sufficient for photosynthesis, such leaf thinning needs to be accompanied with elevated density to ensure structural stability. The findings provide the insights on the evolutionary clue about the biomass investment and output of photosynthetic organs of plants. Because of the importance of leaves, plants could have enhanced the ratio of dry material per unit area of leaf in order to increase the efficiency of photosynthesis, relative the other parts of plants. Although the conclusion is drawn only based on 11 bamboo species, it should also be applicable to the other plants, especially considering previous works on the exponent of the weight-area relationship being less than 3/2 in plants.