Browsing by Author "Seebens, Hanno"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
- ItemAround the world in 500 years: Inter-regional spread of alien species over recent centuries(John Wiley & Sons Ltd., 2021) Seebens, Hanno; Blackburn, Tim M.; Hulme, Philip E.; Van Kleunen, Mark; Liebhold, Andrew M.; Orlova-Bienkowskaja, Marina; Pyšek, Petr; Schindler, Stefan; Essl, FranzAim: The number of alien species has been increasing for centuries world-wide, but temporal changes in the dynamics of their inter-regional spread remain unclear. Here, we analyse changes in the rate and extent of inter-regional spread of alien species over time and how these dynamics vary among major taxonomic groups. Location: Global. Time period: 1500–2010. Major taxa studied: Vascular plants, mammals, birds, fishes, arthropods and other invertebrates. Methods: Our analysis is based on the Alien Species First Record Database, which comprises >60,000 entries describing the year when an alien species was first recorded in a region (mostly countries and large islands) where it later established as an alien species. Based on the number and distribution of first records, we calculated metrics of spread between regions, which we termed “inter-regional spread”, and conducted statistical analyses to assess variations over time and across taxonomic groups. Results: Almost all (>90%) species introduced before 1700 are found in more than one region today. Inter-regional spread often took centuries and is ongoing for many species. The intensity of inter-regional spread increased over time, with particularly steep increases after 1800. Rates of spread peaked for plants in the late 19th century, for birds and invertebrates in the late 20th century, and remained largely constant for mammals and fishes. Inter-regional spread for individual species showed hump-shaped temporal patterns, with the highest rates of spread at intermediate alien range sizes. Approximately 50% of widespread species showed signs of declines in spread rates. Main conclusions: Our results show that, although rates of spread have declined for many widespread species, for entire taxonomic groups they have tended to increase continuously over time. The large numbers of alien species that are currently observed in only a single region are anticipated to be found in many other regions in the future.
- ItemThe Convention on Biological Diversity (CBD)’s Post-2020 target on invasive alien species – what should it include and how should it be monitored?(2020) Essl, Franz; Latombe, Guillaume; Lenzner, Bernd; Pagad, Shyama; Seebens, Hanno; Smith, Kevin; Wilson, John R. U.; Genovesi, PieroThe year 2020 and the next few years are critical for the development of the global biodiversity policy agenda until the mid-21st century, with countries agreeing to a Post-2020 Global Biodiversity Framework under the Convention on Biological Diversity (CBD). Reducing the substantial and still rising impacts of invasive alien species (IAS) on biodiversity will be essential if we are to meet the 2050 Vision where biodiversity is valued, conserved, and restored. A tentative target has been developed by the IUCN Invasive Species Specialist Group (ISSG), and formally submitted to the CBD for consideration in the discussion on the Post-2020 targets. Here, we present properties of this proposal that we regard as essential for an effective Post-2020 Framework. The target should explicitly consider the three main components of biological invasions, i.e. (i) pathways, (ii) species, and (iii) sites; the target should also be (iv) quantitative, (v) supplemented by a set of indicators that can be applied to track progress, and (vi) evaluated at medium- (2030) and long-term (2050) time horizons. We also present a proposed set of indicators to track progress. These properties and indicators are based on the increasing scientific understanding of biological invasions and effectiveness of responses. Achieving an ambitious action-oriented target so that the 2050 Vision can be achieved will require substantial effort and resources, and the cooperation of a wide range of stakeholders.
- ItemData descriptor : Pacific introduced flora (PaciFLora)(Pensoft, 2021) Wohlwend, Michael Rudolf; Craven, Dylan; Weigelt, Patrick; Seebens, Hanno; Winter, Marten; Kreft, Holger; Dawson, Wayne; Essl, Franz; Van Kleunen, Marl; Pergl, Jan; Pysek, Petr; Space, James; Thomas, Philip; Knight, TiffanyThe Pacific region has the highest density of naturalized plant species worldwide, which makes it an important area for research on the ecology, evolution and biogeography of biological invasions. While different data sources on naturalized plant species exist for the Pacific, there is no taxonomically and spatially harmonized database available for different subsets of species and islands. A comprehensive, accessible database containing the distribution of naturalized vascular plant species in the Pacific will enable new basic and applied research for researchers and will be an important information source for practitioners working in the region.Here, we present PacIFlora, an updated and taxonomically standardized list of naturalized species, their unified nativeness, cultivation and invasiveness status, and their distribution across the Pacific Ocean, including harmonized location denommination. This list is based on the two largest databases on naturalized plants for the region, specifically the Pacific Island Ecosystems at Risk (PIER) and the Global Naturalized Alien Flora (GloNAF) databases. We provide an outlook for how this database can contribute to numerous research questions and conservation efforts.
- ItemNo saturation in the accumulation of alien species worldwide(Nature Research (part of Springer Nature), 2017) Seebens, Hanno; Blackburn, T. M.; Dyer, E. E.; Genovesi, P.; Hulme, P. E.; Jeschke, J. M.; Pagad, S.; Pysek, P.; Winter, M.; Arianoutsou, M.; Bacher, S.; Blasius, B.; Brundu, G.; Capinha, G.; Celesti-Grapow, L.; Dawson, W.; Dullinger, S.; Fuentes, N.; Jager, H.; Kartesz, J.; Kenis, M.; Kreft, H.; Kuhn, I; Lenzner, B.; Liebhold, A.; Mosena, A.; Moser, D.; Nishino, M.; Pearman, D.; Pergl, J.; Rabitsch, W.; Rojas-Sandoval, J.; Roques, A.; Rorke, S.; Rossinelli, S.; Roy, H. E.; Scalera, R.; Schindler, S.; Stajerova, K.; Tokarska-Guzik, B.; Van Kleunen, M.; Walker, K.; Weigelt, P.; Yamanaka, T.; Essl, F.Although research on human-mediated exchanges of species has substantially intensified during the last centuries, we know surprisingly little about temporal dynamics of alien species accumulations across regions and taxa. Using a novel database of 45,813 first records of 16,926 established alien species, we show that the annual rate of first records worldwide has increased during the last 200 years, with 37% of all first records reported most recently (1970–2014). Inter-continental and inter-taxonomic variation can be largely attributed to the diaspora of European settlers in the nineteenth century and to the acceleration in trade in the twentieth century. For all taxonomic groups, the increase in numbers of alien species does not show any sign of saturation and most taxa even show increases in the rate of first records over time. This highlights that past efforts to mitigate invasions have not been effective enough to keep up with increasing globalization.
- ItemProjecting the continental accumulation of alien species through to 2050(John Wiley & Sons, 2020) Seebens, Hanno; Bacher, Sven; Blackburn, Tim M.; Capinha, Cesar; Dawson, Wayne; Dullinger, Stefan; Genovesi, Piero; Hulme, Philip E.; Van Kleunen, Mark; Kuhn, Ingolf; Jeschke, Jonathan M.; Lenzner, Bernd; Liebhold, Andrew M.; Pattison, Zarah; Pergl, Jan; Pysek, Petr; Winter, Marten; Essl, FranzBiological invasions have steadily increased over recent centuries. However, we still lack a clear expectation about future trends in alien species numbers. In particular, we do not know whether alien species will continue to accumulate in regional floras and faunas, or whether the pace of accumulation will decrease due to the depletion of native source pools. Here, we apply a new model to simulate future numbers of alien species based on estimated sizes of source pools and dynamics of historical invasions, assuming a continuation of processes in the future as observed in the past (a business‐as‐usual scenario). We first validated performance of different model versions by conducting a back‐casting approach, therefore fitting the model to alien species numbers until 1950 and validating predictions on trends from 1950 to 2005. In a second step, we selected the best performing model that provided the most robust predictions to project trajectories of alien species numbers until 2050. Altogether, this resulted in 3,790 stochastic simulation runs for 38 taxon–continent combinations. We provide the first quantitative projections of future trajectories of alien species numbers for seven major taxonomic groups in eight continents, accounting for variation in sampling intensity and uncertainty in projections. Overall, established alien species numbers per continent were predicted to increase from 2005 to 2050 by 36%. Particularly, strong increases were projected for Europe in absolute (+2,543 ± 237 alien species) and relative terms, followed by Temperate Asia (+1,597 ± 197), Northern America (1,484 ± 74) and Southern America (1,391 ± 258). Among individual taxonomic groups, especially strong increases were projected for invertebrates globally. Declining (but still positive) rates were projected only for Australasia. Our projections provide a first baseline for the assessment of future developments of biological invasions, which will help to inform policies to contain the spread of alien species.
- ItemScientists’ warning on invasive alien species(Wiley, 2019) Pysek, Petr; Hulme, Philip E.; Simberloff, Dan; Bacher, Sven; Blackburn, Tim M.; Carlton, James T.; Dawson, Wayne; Essl, Franz; Foxcroft, Llewellyn C.; Genovesi, Piero; Jeschke, Jonathan M.; Kühn, Ingolf; Liebhold, Andrew M.; Mandrak, Nicholas E.; Meyerson, Laura A.; Pauchard, Aníbal; Pergl, Jan; Roy, Helen E.; Seebens, Hanno; Van Kleunen, Mark; Vila, Montserrat; Wingfield, Michael J.; Richardson, David M.Biological invasions are a global consequence of an increasingly connected world and the rise in human population size. The numbers of invasive alien species – the subset of alien species that spread widely in areas where they are not native, affecting the environment or human livelihoods – are increasing. Synergies with other global changes are exacerbating current invasions and facilitating new ones, thereby escalating the extent and impacts of invaders. Invasions have complex and often immense long-term direct and indirect impacts. In many cases, such impacts become apparent or problematic only when invaders are well established and have large ranges. Invasive alien species break down biogeographic realms, affect native species richness and abundance, increase the risk of native species extinction, affect the genetic composition of native populations, change native animal behaviour, alter phylogenetic diversity across communities, and modify trophic networks. Many invasive alien species also change ecosystem functioning and the delivery of ecosystem services by altering nutrient and contaminant cycling, hydrology, habitat structure, and disturbance regimes. These biodiversity and ecosystem impacts are accelerating and will increase further in the future. Scientific evidence has identified policy strategies to reduce future invasions, but these strategies are often insufficiently implemented. For some nations, notably Australia and New Zealand, biosecurity has become a national priority. There have been long-term successes, such as eradication of rats and cats on increasingly large islands and biological control of weeds across continental areas. However, in many countries, invasions receive little attention. Improved international cooperation is crucial to reduce the impacts of invasive alien species on biodiversity, ecosystem services, and human livelihoods. Countries can strengthen their biosecurity regulations to implement and enforce more effective management strategies that should also address other global changes that interact with invasions.
- ItemA workflow for standardising and integrating alien species distribution data(Pensoft, 2020) Seebens, Hanno; Clarke, David A.; Groom, Quentin; Wilson, John R. U.; Garcia-Berthou, Emili; Kuhn, Ingolf; Roige, Mariona; Pagad, Shyama; Essl, Franz; Vicente, Joana; Winter, Marten; McGeoch, MelodieBiodiversity data are being collected at unprecedented rates. Such data often have significant value for purposes beyond the initial reason for which they were collected, particularly when they are combined and collated with other data sources. In the field of invasion ecology, however, integrating data represents a major challenge due to the notorious lack of standardisation of terminologies and categorisations, and the application of deviating concepts of biological invasions. Here, we introduce the SInAS workflow, short for Standardising and Integrating Alien Species data. The SInAS workflow standardises terminologies following Darwin Core, location names using a proposed translation table, taxon names based on the GBIF backbone taxonomy, and dates of first records based on a set of predefined rules. The output of the SInAS workflow provides various entry points that can be used both to improve coherence among the databases and to check and correct the original data. The workflow is flexible and can be easily adapted and extended to the needs of different users. We illustrate the workflow using a case-study integrating five widely used global databases of information on biological invasions. The comparison of the standardised databases revealed a surprisingly low degree of overlap, which indicates that the amount of data may currently not be fully exploited in the original databases. We highly recommend the use and development of publicly available workflows to ensure that the integration of databases is reproducible and transparent. Workflows, such as SInAS, ultimately increase trust in data, study results, and conclusions.