Browsing by Author "Rose, Lindy J."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- ItemAgricultural practices and their potential role in mycotoxin contamination of maize and groundnut subsistence farming(Academy of Science of South Africa, 2019-09-26) Phokane, Sylvia; Flett, Bradley C.; Ncube, Edson; Rheeder, John P.; Rose, Lindy J.Mycotoxigenic fungi are common pathogens of maize and groundnuts; they produce mycotoxins which reduce the yield and quality of these grain crops. Numerous agricultural practices including crop rotation and storage methods have been shown to impact mycotoxin accumulation. Therefore, the farming and storage practices in maize and groundnut subsistence farming systems in Pongola, Vryheid, Jozini, Manguzi and Mbazwana Districts of northern KwaZulu-Natal (South Africa) were surveyed to determine their potential role in promoting or mitigating mycotoxin contamination. A questionnaire about agricultural farming practices and storage facilities was presented to 65 subsistence maize and/or groundnut farmers. At least 90% of the farmers surveyed were not aware of mycotoxins and their consequences to animal and human health. The majority of the farmers did not practise crop rotation. However, they practised intercropping and sorted damaged and mouldy grain (maize and groundnuts) before storage. The damaged or mouldy grain was largely used as animal feed, thereby exposing animals to an increased risk of mycotoxicoses. Metal tanks and inqolobane (a type of wooden structure) were identified as the most common storage structures. Harvested homegrown maize was mostly used for the farmers’ own consumption but also sometimes sold to the local community. The implementation of mycotoxin awareness campaigns is necessary, particularly in these districts. The storage facilities used by the subsistence farmers allowed increased moisture and insect invasion. The need for the surveillance of mycotoxins in subsistence-farmed food crops is vital.
- ItemAssessing genotype-by-environment interactions in aspergillus ear rot and pre-harvest aflatoxin accumulation in maize inbred lines(MDPI, 2017) Okoth, Sheila; Rose, Lindy J.; Ouko, Abigael; Netshifhefhe, Nakisani E. I.; Sila, Henry; Viljoen, AltusAspergillus flavus, causal agent of the Aspergillus ear rot (AER) of maize, also produces aflatoxins that cause aflatoxicosis in humans and livestock. Ten maize inbred lines were evaluated in replicated trials in two aflatoxicosis outbreak hot spots in Kenya and in three maize-growing areas in South Africa for resistance to AER, A. flavus colonization, and pre-harvest aflatoxin accumulation during the 2012/13 growing season. AER severity was measured by visual assessment, while A. flavus colonization and aflatoxin content were quantified by real-time polymerase chain reaction (PCR) and liquid chromatography tandem mass spectrometry, respectively. Genotype by environment interaction (GEI) was determined using analysis of variance (ANOVA), additive main effects and multiplicative models (AMMI), and genotype plus by environment (GGE) biplot analyses. Stability of genotypes was evaluated using AMMI analysis. AER severity and fungal colonization significantly (p < 0.001) varied between genotypes. GEI influenced the severity of AER symptoms and aflatoxin accumulation significantly (p < 0.001), while fungal colonization was not affected. The inbred lines response was consistent for this trait in the test environments and was thus considered a desirable measure to indicate maize lines with a high risk of aflatoxin accumulation. CML495, CKL05019, LaPosta, and MIRTC5 were the least diseased lines, with the lowest aflatoxin contamination and a stable phenotypic response across the environments. Kiboko was determined as the ideal representative test environment, with discriminative ability of the genotypes for selection of the desired stable responses of the three traits.
- ItemMycotoxigenic Fusarium species associated with grain crops in South Africa – a review(Academy of Science of South Africa, 2017) Beukes, Ilze; Rose, Lindy J.; Shephard, Gordon S.; Flett, Bradley C.; Viljoen, AltusCereal grains include some of the most important crops grown in South Africa and play a major role in the local economy. Maize, wheat and sorghum are extensively consumed by humans and farm animals, and are also utilised in industrial processes. Grain crops that are grown commercially contribute up to 33% of the country’s total gross agricultural production, whereas subsistence farmers grow grains mainly to sustain their families. In rural communities an average intake of maize grain of more than 300 g dry weight per person per day is not uncommon. The production of grains is often constrained by pests and diseases that may reduce their yields and quality. In South Africa, 33 mycotoxin-producing Fusarium species have been associated with grain crops. Mycotoxins, such as fumonisins and deoxynivalenol, have been found in levels exceeding the maximum levels imposed by the US Food and Drug Administration and the European Union and therefore pose a serious public health concern. We provide an extensive overview of mycotoxigenic Fusarium species associated with grain crops in South Africa, with particular reference to maize, wheat and sorghum.
- ItemOccurrence and spread of the banana fungus Fusarium oxysporum f. sp. cubense TR4 in Mozambique(ASSAf, 2020-11-26) Viljoen, Altus; Mostert, Diane; Chiconela, Tomas; Beukes, Ilze; Fraser, Connie; Dwyer, Jack; Murray, Henry; Amisse, Jamisse; Matabuana, Elie L.; Tazan, Gladys; Amugoli, Otuba M.; Mondjana, Ana; Vaz, Antonia; Pretorius, Anria; Bothma, Sheryl; Rose, Lindy J.; Beed, Fenton; Dusunceli, Fazil; Chao, Chih-Ping; Molina, AgustinFusarium wilt, caused by the soil-borne fungus Fusarium oxysporum f. sp. cubense (Foc), poses a major threat to banana production globally. A variant of Foc that originated in Southeast Asia, called tropical race 4 (TR4), was detected on a Cavendish banana export plantation (Metocheria) in northern Mozambique in 2013. Foc TR4 was rapidly disseminated on the farm, and affected approximately half a million plants within 3 years. The fungus was also detected on a second commercial property approximately 200 km away (Lurio farm) a year later, and on a small-grower’s property near Metocheria farm in 2015. Surveys in Mozambique showed that non-Cavendish banana varieties were only affected by Foc race 1 and race 2 strains. The testing of Cavendish banana somaclones in northern Mozambique revealed that GCTCV-119 was most resistant to Foc TR4, but that GCTCV-218 produced better bunches. The occurrence of Foc TR4 in northern Mozambique poses a potential threat to food security on the African continent, where banana is considered a staple food and source of income to millions of people. Cavendish somaclones can be used, in combination with integrated disease management practices, to replace susceptible Cavendish cultivars in southern Africa. The comprehensive testing of African cooking bananas for resistance to Foc TR4 is required, along with the improvement of biosecurity and preparedness of growers on the African continent.