Browsing by Author "Rentel, Monique"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- ItemMorphology and taxonomy of tortricid moth pests attacking fruit crops in South Africa(Stellenbosch : Stellenbosch University, 2013-03) Rentel, Monique; Addison, Pia; Geertsema, H.; Brown, J. W.; Stellenbosch University. Faculty of AgriSciences. Dept. of Conservation Ecology and Entomology.ENGLISH ABSTRACT: Cydia pomonella (codling moth), Thaumatotibia leucotreta (False codling moth), Thaumatotibia batrachopa (Macadamia nut borer), Grapholita molesta (Oriental fruit moth), Cryptophlebia peltastica (Litchi moth), Epichoristodes acerbella (Pear leafroller/Carnation worm) and Lozotaenia capensana (Apple leafroller) are the most economically important tortricids affecting various crops in South Africa. The correct identification of these species, especially of the larval stage, is of great importance in pest management. Using available literature, augmented by additional morphological studies, an interactive identification key (Lucid key) for larval and adult stages of the seven species was developed. The colour and markings of the head, characteristics of the prothoracic and anal shields, the position of the prespiracular setae (L-group) relative to the spiracle on the prothoracic segment, the position of the spiracle on the eighth abdominal segment and L-group on the ninth abdominal segment, as well as the presence or absence of the anal comb are key characteristics for larval identification. For adult identification, wing pattern and genitalia are the most important features. However, the use of genitalia for moth identification might be difficult for the lay user, as the dissection and mounting of these structures requires certain skills and specialized equipment. Thus, genitalia have not been included in the Lucid Key. Differences in the morphological characteristics of most pupae were so minute that this stage was also not included in the Lucid key. However, the pupae of E. acerbella and L. capensana are easily distinguished from those of the other species by the presence of acremaster. This study also included the first morphological description of the pupa of L. capensana, which can be distinguished from that of E. acerbella by various features of the cremaster, antennae, spiracle shape, number of setae on abdominal segments A5-7, the size of spines on A3-7, and the presence/absence of spines on A9. A previous study by Timm (2005) indicated that geographically isolated populations of T. leucotreta tend to be genetically distinct. This raised the question of whether speciation/subspeciation has occurred or is occurring. Male moth genitalia are thought to evolve rapidly and are often the only features that can reliably distinguish similar species. Hence, variation in the shape of the valvae of T. leucotreta was used to determine whether divergence has occurred between populations of T. leucotreta. Elliptical Fourier analysis was used to analyze the valvar variation in three different populations. Although some variation in valvar shape was detected among mean population values for certain traits, no clear pattern emerged. Principle component analysis also showed no distinct clustering of valvae shape among populations, providing no evidence for divergence in male genitalia and therefore no morphological evidence of incipient speciation.