Browsing by Author "Nyakatya, Mawethu Justice"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- ItemPatterns of variability in Azorella selago Hook. (Apiaceae) on sub-Antarctic Marion Island : climate change implications(Stellenbosch : Stellenbosch University, 2006-12) Nyakatya, Mawethu Justice; McGeoch, M. A.; Stellenbosch University. Faculty of Agrisciences. Dept. of Conservation Ecology and Entomology.ENGLISH ABSTRACT: Understanding the responses of species to climate change is a scientific problem that requires urgent attention, especially under current conditions of global climate change. The large and rapid rates of climate change reported for sub-Antarctic Marion Island makes the island highly suitable for studying the biotic consequences of climate change. Furthermore, the extreme environments on the island result in a close coupling of the biotic (e.g. population dynamics) and abiotic (e.g. climate) factors. Therefore, examining the response of the dominant and keystone plant species on the island, Azorella selago Hook. (Apiaceae), to climate-associated environmental change (e.g. temperature) may provide insight into how A. selago and the associated species communities will be affected by climate change. This study described the variability in microclimate temperatures associated with A. selago across altitudinal gradient and between the eastern and western sides of Marion Island. Microclimate temperatures were also compared to the island’s Meteorological data to determine variation between temperatures experienced by A. selago cushion-plants in the field and those recorded at the island’s Meteorological Station. Temperature variation inside and outside A. selago cushions was also examined. Azorella selago cushions were found to have a buffering effect on temperature, such that species occurring epiphytically on A. selago experience more moderate temperatures than the surrounding environment. However, A. selago were found to experience more extreme temperatures than temperatures recorded at the Meteorological Station. Therefore, A. selago may possibly experience greater environmental warming than recorded by the Meteorological Station. While temperatures decline with altitude, temperature conditions on the western side of the island were more temperate than the eastern side. This presents the first record of temperature conditions on the western side of the island. This study also quantified fine-scale (e.g. within-site) and broad-scale (e.g. island-wide) variability patterns of A. selago (morphology, phenology, and epiphyte load) across Marion Island. Altitudinal gradient and climatic exposure at different sides of the island were used to understand the likely effects of climate associated environmental change on this dominant component of the fellfield habitat. Site-specific processes were found to determine the spatial structure of A. selago characteristics at fine-scales. However, broad-scale observations established strong responses of A. selago characteristics to altitudinal gradients and different sides of the island. Azorella selago morphological features (e.g. plant size and leaf size) were found to be more responsive to differences between the eastern and western sides of the island than to altitudinal gradient. Azorella selago micro-morphological features (e.g. leaf trichomes and stomatal densities) were also found to be more responsive to climatic exposure at different sides of the island than to altitudinal gradient. However, differences in A. selago epiphyte density (e.g. Agrostis magellanica) and phenology resembled microclimate temperatures in that they were more responsive to altitudinal gradient than to side of the island differences. From these results it can therefore be predicted that the A. selago of Marion Island is likely to be morphologically fairly resilient to moderate climatic shifts, although at lower altitudes and on the eastern side of the island, it may be outcompeted by the epiphytic grass, Agrostis magellanica. The results also suggest that the warming climate of Marion Island may result in an early occurrence of phenological processes particularly at lower altitudes and the eastern side. Azorella selago at lower altitudes and on the eastern side of Marion Island are therefore expected to largely show more symptoms of climate change (e.g. warming) on this species. Azorella selago is also predicted to move up altitudinal gradients in response to warming.