Browsing by Author "Muller, Neil"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- ItemFacial recognition, eigenfaces and synthetic discriminant functions(Stellenbosch : Stellenbosch University, 2000-12) Muller, Neil; Herbst, B. M.; Stellenbosch University. Faculty of Science. Dept. of Mathematical Sciences.ENGLISH ABSTRACT: In this thesis we examine some aspects of automatic face recognition, with specific reference to the eigenface technique. We provide a thorough theoretical analysis of this technique which allows us to explain many of the results reported in the literature. It also suggests that clustering can improve the performance of the system and we provide experimental evidence of this. From the analysis, we also derive an efficient algorithm for updating the eigenfaces. We demonstrate the ability of an eigenface-based system to represent faces efficiently (using at most forty values in our experiments) and also demonstrate our updating algorithm. Since we are concerned with aspects of face recognition, one of the important practical problems is locating the face in a image, subject to distortions such as rotation. We review two well-known methods for locating faces based on the eigenface technique.e These algorithms are computationally expensive, so we illustrate how the Synthetic Discriminant Function can be used to reduce the cost. For our purposes, we propose the concept of a linearly interpolating SDF and we show how this can be used not only to locate the face, but also to estimate the extent of the distortion. We derive conditions which will ensure a SDF is linearly interpolating. We show how many of the more popular SDF-type filters are related to the classic SDF and thus extend our analysis to a wide range of SDF-type filters. Our analysis suggests that by carefully choosing the training set to satisfy our condition, we can significantly reduce the size of the training set required. This is demonstrated by using the equidistributing principle to design a suitable training set for the SDF. All this is illustrated with several examples. Our results with the SDF allow us to construct a two-stage algorithm for locating faces. We use the SDF-type filters to obtain initial estimates of the location and extent of the distortion. This information is then used by one of the more accurate eigenface-based techniques to obtain the final location from a reduced search space. This significantly reduces the computational cost of the process.