Browsing by Author "Mudavanhu, Pride"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
- ItemBiologically based methods for pest management in agriculture under changing climates : challenges and future directions(MDPI, 2012) Chidawanyika, Frank; Mudavanhu, Pride; Nyamukondiwa, CasperThe current changes in global climatic regimes present a significant societal challenge, affecting in all likelihood insect physiology, biochemistry, biogeography and population dynamics. With the increasing resistance of many insect pest species to chemical insecticides and an increasing organic food market, pest control strategies are slowly shifting towards more sustainable, ecologically sound and economically viable options. Biologically based pest management strategies present such opportunities through predation or parasitism of pests and plant direct or indirect defense mechanisms that can all be important components of sustainable integrated pest management programs. Inevitably, the efficacy of biological control systems is highly dependent on natural enemy-prey interactions, which will likely be modified by changing climates. Therefore, knowledge of how insect pests and their natural enemies respond to climate variation is of fundamental importance in understanding biological insect pest management under global climate change. Here, we discuss biological control, its challenges under climate change scenarios and how increased global temperatures will require adaptive management strategies to cope with changing status of insects and their natural enemies.
- ItemGlobal climate change as a driver of bottom-up and top-down factors in agricultural landscapes and the fate of host-parasitoid interactions(Frontiers Media, 2019-03-28) Chidawanyika, Frank; Mudavanhu, Pride; Nyamukondiwa, CasperThe global climate is rapidly changing and the evidence is increasingly manifesting across various biological systems. For arthropods, several studies have demonstrated how changing climates affect their distribution through phenological and physiological responses, largely focusing on various organismal fitness parameters. However, the net-effect of the changing climate among ecological communities may be mediated by the feedback pathways among interacting trophic groups under environmental change. For agroecosystems, the maintenance of the integrity of trophic interactions even under climate variability is a high priority. This is even more important in this era where there is advocacy for sustainable agriculture, with higher emphasis on environmentally benign methods. For this reason, pest management in food production systems using biological control (especially use of parasitoid antagonists) has come to the forefront. In this review, we give an overview of the diversity of physiological responses among host insect and parasitoid populations and how this may influence their interactions. We highlight how climate change may modify bottom-up and top-down factors among agroecosystems with a particular focus on plant-insect host-parasitoid tritrophic interactions. We also outline how habitat management may influence arthropod population dynamics and how it can be manipulated to improve on-farm climate resilience and parasitoid conservation. We wrap-up by highlighting how the application of knowledge of conservation biodiversity, designing of multifunctional resilient landscapes, and evolutionary physiology of arthropods under thermal stress may be used to improve the fitness of mass-reared parasitoids (in or ex situ) for the improvement in efficacy of parasitoids ecosystem services under thermally stressful environments.
- ItemAn investigation into the integrated pest management of the obscure mealybug, Pseudococcus viburni (Signoret) (Hemiptera: Pseudococcidae), in pome fruit orchards in the Western Cape Province, South Africa(Stellenbosch : University of Stellenbosch, 2009-12) Mudavanhu, Pride; Addison, Pia; University of Stellenbosch. Faculty of Agrisciences. Dept. of Conservation Ecology and Entomology.ENGLISH ABSTRACT: Pseudococcus viburni (Signoret) (Hemiptera: Pseudococcidae) (obscure mealybug), is a common and serious pest of apples and pears in South Africa. Consumer and regulatory pressure to produce commodities under sustainable and ecologically compatible conditions has rendered chemical control options increasingly limited. Information on the seasonal occurrence of pests is but one of the vital components of an effective and sustainable integrated pest management system needed for planning the initiation of monitoring and determining when damage can be expected. It is also important to identify which orchards are at risk of developing mealybug infestations while development of effective and early monitoring tools for mealybug populations will help growers in making decisions with regards to pest management and crop suitability for various markets. It is also essential to determine the presence and efficacy of naturally occurring biological control agents in orchards so as to ascertain the potential of biological control as a viable alternative in orchards. However, under the current integrated pest management protocol, it has been difficult to determine this, due to the sporadic and relatively low incidence of mealybug infestations in some orchards, or by simply relying on naturally occurring field populations of biocontrol agents. Knowledge of the environmental conditions under which P. viburni population levels may become destructive is also essential for timing the release of insectary reared natural enemies as well as understanding the population ecology of this pest and its natural enemies. Information was gathered regarding the seasonal phenology of P. viburni and its natural enemies in pome fruit orchards in the Western Cape Province during the 2007/08 and 2008/09 growing seasons. Seasonal population studies showed that P. viburni has multiple overlapping generations with all life stages present throughout the year. The highest orchard infestations occurred during the summer period until early winter (January to early June). This was followed by a decrease in population from late June to November, before another increase in December. Presence-absence sampling of mealybugs on the host plant revealed that woody parts of the tree, such as the trunk and old stems were the most preferred sites for mealybug habitation, due to the availability of protected refuge sites. Migration of mealybug populations to newer growth and the upper sections of the tree crown, such as the new stems, leaves and eventually the fruit, was observed from December throughout the summer period until the early winter in June. Fruit colonization in both apples and pears commenced in January, when the fruit had developed a size sufficient for P. viburni to penetrate and occupy spaces such as the fruit core, calyx and stem end. There was no evidence of P. viburni occurring beneath the soil surface or on the roots of host trees. Two natural enemies of mealybugs, namely Pseudaphycus maculipennis (Mercet) and Coccidoxenoides perminutus (Girault), were found to be active in apple and pear orchards in the Western Cape. However, the status of C. perminutus as a parasite of P. viburni still needs to be verified despite evidence of emergence from P. viburni mummies, which was not sufficient enough to suggest that it is a useful biological control agent. Seasonal abundance trends of the two natural enemies revealed that their lifecycle is synchronized with that of the host. However, there was no evidence of P. maculipennis activity in Ceres. No predators were found during the course of this study. The rate of P. viburni parasitism at harvest was 46.52%, with P. maculipennis and C. perminutus constituting 98.966% and 1.034% of the parasitoids recovered from mealybug mummies, respectively. Studies on the use of pheromone traps as early monitoring tools for P. viburni showed that there was a positive and significant relationship between the fruit infestation and number of P. viburni adult males caught in pheromone-baited traps (r2 = 0.454). The action threshold level was estimated to be 2.5 male P. viburni caught per trap per fortnight at an economic threshold of 2% fruit infestation.
- ItemMating compatibility and competitiveness between wild and laboratory strains of Eldana saccharina (Lepidoptera : Pyralidae) after radiation treatment(Florida Entomological Society, 2016) Mudavanhu, Pride; Addison, Pia; Carpenter, James E.; Conlong, Des E.The efficacy of the sterile insect technique (SIT) applied as part of area-wide integrated pest management (AW-IPM) depends on efficient transfer of sperm carrying dominant lethal mutations from sterile males to wild females. Success or failure of this strategy is therefore critically dependent on quality and ability of sterile males to search for and copulate with wild females. The African sugarcane borer, Eldana saccharina Walker (Lepidoptera: Pyralidae) is an economic pest of sugarcane targeted for control in South Africa using an AW-IPM approach with a SIT component. As part of further steps towards development of the technique, levels of mating competitiveness and compatibility were assessed by observing the extent to which individuals from different populations interbreed when confined together under both laboratory and semi-field conditions. Three types of pair-wise competition experiments were conducted: non-irradiated laboratory adults vs. non-irradiated wild adults, irradiated (200 Gy) laboratory adults vs. non-irradiated wild adults, and non-irradiated laboratory adults vs. irradiated (200 Gy) laboratory adults. Data from these tests were used to generate indices for mating performance and measuring sexual compatibility between strains. Irrespective of trial location, wild moths did not discriminate against irradiated or laboratory-reared moths, indicating no negative effects on acceptability for mating due to laboratory rearing or radiation treatment. In general, irradiated males mated significantly more than their wild counterparts regardless of the type of female, which indicated that they were still as competitive as their wild counterparts. The mating indices generated showed no evidence of incipient pre-mating isolation barriers or sexual incompatibility with the wild strain. Data presented in this paper therefore indicate that there is scope for further development of the SIT as an addition to the arsenal of tactics available for AW-IPM of this economic pest.
- ItemPerformance of sterilized Eldana saccharina Walker (Lepidoptera: Pyralidae) adults in mating and cage trials : further steps towards its control using the Sterile Insect Technique(Stellenbosch : Stellenbosch University, 2012-12) Mudavanhu, Pride; Conlong, D. E.; Addison, Pia; Stellenbosch University. Faculty of AgriSciences. Dept. of Conservation Ecology and Entomology.The sugarcane borer, Eldana saccharina Walker (Lepidoptera: Pyralidae) is the most limiting factor in the South African sugar industry with losses to this insect pest estimated to be at least ZAR60 million per annum. Because of its cryptic nature as well as the fact that E. saccharina is both indigenous to Africa and occurs on several host plants, attempts to control or eradicate it using several available methods have not been very successful. However, the sterile insect technique (SIT) is one of the newer control methods that can be incorporated into an area-wide integrated pest management (AW-IPM) programme to achieve better control or eradication. The implementation of the SIT program needs to go through a series of well-researched phases in order to be successful. In the first of this multi-phase project, it was determined that E. saccharina is susceptible to ionizing radiation, and is thus a suitable candidate for the SIT development against it and that a sub-sterilizing dose of 200 Gy is sufficient to induce F1(inherited) sterility in male and complete sterility in female moths respectively. The results presented here are discussed in the context of further development of the SIT as an addition to the arsenal of tactics in an AW-IPM programme against E. saccharina. Based on these initial findings, the study examined the lek and mating behavior of male moths subjected to three radiation doses (150, 200, 250 Gy) against normal non-irradiated/fertile moths. Both mass-rearing and irradiation of E. saccharina led to a quantitative departure of male mating behavior away from that exhibited by their wild counterparts. However, treated males are still able to form leks and mate with wild females. Male E. saccharina irradiated at all three doses tested were found to be as active and competitive as wild males, but in some of the traits measured, performance diminished significantly with an increase in the radiation dosage. In general, the performance of moths treated at 200 Gy did not differ significantly from that of moths treated at 150 Gy and therefore the former dose is ideal for SIT development since it results in a lower residual F1 fertility than the latter. The level of mating competitiveness and compatibility was assessed under both laboratory and semi-field conditions in pairwise comparisons consisting of laboratory reared vs. wild (L-W), 200 Gy irradiated vs. wild (S-W) and laboratory reared vs. irradiated moths (L-S). Based on the results from the more robust field cage assays, the mating indices generated indicated that the mass-reared E. saccharina strain produced in South Africa has not yet evolved sexual behaviours suggestive of incipient pre-mating isolation barriers with local wild strains. Wild moths did not discriminate against either the partially sterile or laboratory reared moths and most importantly, the irradiated males mated significantly more than their wild counterparts regardless of the type of female. The irradiated insects could therefore achieve the purpose for which they are intended upon release into the field. Third, the critical thermal limits (CTLs) to activity at high and low temperatures (i.e. critical thermal maxima “CTmax” and minima “CTmin”) of different E. saccharina strains/treatments were investigated under standard experimental conditions. The effect of laboratory rearing and increasing radiation dosage on thermal tolerance of the adult stage of E. saccharina was explored. There were highly significant differences between the laboratory-reared and wild strain and also between non-irradiated and irradiated strains in both CTmax and CTmin. Laboratory reared E. saccharina moths were more heat tolerant compared to wild moths for both genders while in the case of CTmin, the reverse was true. Irradiation had a negative effect on both CTmax and CTmin. Moths treated at the lowest radiation dose were more cold and heat tolerant than those treated at higher dosages thereby reinforcing the importance of lower dosages rather than those that induce full sterility against E. saccharina. In general, gender effects on the CTLs were non-significant. Pilot sterile male releases in shade house trials to measure the impact of sustained releases of partially sterile adult males at an over-flooding moth ratio of 10T: 1U (treated to untreated),were conducted to measure their efficacy to stop E. saccharina incursions and suppress populations prior to testing in pilot studies under true season-long and area wide conditions. Results from the current study demonstrated that releasing partially irradiated (200 Gy) adult male moths at the afore mentioned release rate significantly reduced sugarcane stalk damage as well as lowered the number of fertile progeny from F1to succeeding generations in a stable E. saccharina population initiated in a cage house. There were more damaged internodes per stalk in the control than in the sugarcane receiving regular releases of partially sterile male moths. Overall, there were significantly more undamaged stalks in the treated sugarcane than the untreated control. Furthermore, there were significantly more larvae per stalk retrieved from the control compared to the treated sugarcane suggesting that the sustained release of steriles was efficacious in reducing emergence of fertile larvae in the succeeding generations. The results of this study indicate that there is considerable scope for the SIT against E. saccharina.