Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Browse the repository
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Motsa, S. S."

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Application of successive linearisation method to squeezing flow with bifurcation
    (Hindawi Publishing Corporation, 2014-01-02) Motsa, S. S.; Makinde, O. D.; Shateyi, S.
    This paper employs the computational approach known as successive linearization method (SLM) to tackle a fourth order nonlinear differential equation modelling the transient flow of an incompressible viscous fluid between two parallel plates produced by a simple wall motion. Numerical and graphical results obtained show excellent agreement with the earlier results reported in the literature. We obtain solution branches as well as a turning point in the flow field accurately. A comparison with numerical results generated using the inbuilt MATLAB boundary value solver, bvp4c, demonstrates that the SLM approach is a very efficient technique for tackling highly nonlinear differential equations of the type discussed in this paper.
  • Loading...
    Thumbnail Image
    Item
    On new high order quasilinearization approaches to the nonlinear model of catalytic reaction in a flat particle
    (Hindawi Publishing Corporation, 2013) Motsa, S. S.; Makinde, O. D.; Shateyi, S.
    A novel computational approach known as pseudospectral quasilinearization (SQLM) is employed to tackle the two-point boundary value problem describing the reactivity behaviour of porous catalyst particles subject to both internal mass concentration gradients and temperature gradients, in endothermic or exothermic catalytic reactions. A comparison with the numerical results generated using the inbuilt MATLAB boundary value solver, bvp4c, for different values of the governing physical parameters is performed and an excellent agreement is achieved. A systematic way of improving the convergence of the SQLM is also presented.

DSpace software copyright © 2002-2023 LYRASIS | Supported by Stellenbosch University


  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback