Browsing by Author "Moller, Zanmari"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- ItemThe use of an oregano oil extract as feed-addictive for Jersey cows grazing on ryegrass pasture in spring(Stellenbosch : Stellenbosch University, 2015-12) Moller, Zanmari; Cruywagen, C. W.; Meeske, R.; Stellenbosch University. Faculty of Agrisciences. Dept. of Animal Sciences.ENGLISH ABSTRACT: Monensin was approved in the 1970’s as a feed additive to ruminant diets. Since then, many studies on the effects of Monensin were done. Its mode of action includes the improvement of feed conversion by altering rumen fermentation. This alteration results in a change in the rumen microbial population. Some processes that benefit from the manipulation of rumen microbial population are volatile fatty acid production, peptide degradation and amino acid deamination. The use of ionophores as an antibacterial product in animal feeds were banned by the European union ( EU) in 2006 because of chemical residues found in the edible product making it potentially unhealthy for human consumption and it is also socially unacceptable. Thus, alternative sources need to be identified to help improve the rumen microbial population. Such an alternative could be plant based EO. Oregano (Origanum vulgare) is a natural anti-bacterial compound affecting a variety of gram positive and gram negative bacteria. It has been reported to improve the overall health and production of lactating dairy cows by enhancing rumen fermentation. The aim of this study was to determine the effect of an essential oil extracted from oregano on production and rumen fermentation of Jersey cows grazing ryegrass pasture during spring. Effects were determined on milk yield, milk composition, live weight body condition, rumen pH, Ammonia-nitrogen (NH3-N) and volatile fatty acid (VFA) composition, organic material (OM) and neutral detergent fibre (NDF) digestibility of pasture in the rumen. Fifty four early lactation Jersey cows were blocked, according to days in milk (DIM), 4% fat corrected milk (FCM) and lactation number. Cows within blocks were randomly allocated to one of the three treatments. The three treatments were as follows: Control (CON; maize based concentrate with no feed additives), an ionophore treatment, (MON; a maize based concentrate with monensin provided a daily dose at 300 mg per cow), and an essential oil treatment (EO; a maize based concentrate with oregano extract provided at a daily dose of 1.15 g per cow. Cows received 6 kg of concentrate in the milking parlour and were allocated 10 kg dry matter (DM) of ryegrass pasture, divided into two grazing periods after each milking. Before milking, cows were separated into their respective treatment groups for milking and the consumption of their specific concentrate treatments. Milk yield was recorded on a daily basis. Composite milk samples were collected per cow on a bi-weekly basis. Live weight and body condition score (BCS) were determined before and after the study. Six rumen cannulated cows were used in the rumen study. Two cows were randomly allocated to each of the three treatments in a 3 x 3 Latin square design (three treatments and three periods) thus all the cows were subjected to all three treatments over the experimental period. Ruminal pH, volatile fatty acids (VFA) concentration, ruminal ammonia-nitrogen (NH3-N), and in sacco degradability were determined. The daily average milk yield and milk fat content did not differ among treatments (P > 0.05) and were 20.5, 20.3 and 20.4 kg per cow and 4.5, 4.5 and 4.6 % for cows receiving the CON, MON and EO concentrates respectively. Milk protein and milk lactose content increased (P < 0.05) for the two additive treatments in comparison to control and were 3.39b, 3.55a and 3.60a % for milk protein and 4.50b, 4.80a and 4.80a % for milk lactose where cows received the CON, MON and EO treatments, respectively. Ruminal pH values did not differ among treatments, however, the average overall pH over the 24 hour profile was higher for the two additive treatments. There were no differences in total volatile fatty acid concentrations among the three treatments. With regards to individual VFA, propionate was decreased in the MON treatment when compared to the CON treatment. The ruminal ammonia nitrogen concentration did not differ among treatments. There were no differences in DM and NDF degradability (DMd and NDFd) on the 6 h incubation period but monensin increased the DMd at 30 h incubation and both monensin and oregano increased NDFd after 30 h incubation. To conclude the use of monensin and oregano oil extract have shown to be beneficial with regards to increasing the milk protein and milk lactose content as well as the NDFd. The average overall pH from the pH profile resulted in the two additive treatments being higher when compared to the control treatment. This could be beneficial to rumen fermentation and have a positive effect on the microbial population. As monensin and oregano oil extract showed similar results, oregano oil extract can be considered as an alternative natural feed additive to monensin.