Browsing by Author "Louw, Anne-Rika"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- ItemDevelopment and validation of stabilized whole blood samples expressing T-cell activation markers as quality control reference material(Stellenbosch : Stellenbosch University, 2008-03) Louw, Anne-Rika; Bouic, Patrick J. D.; Stellenbosch University. Faculty of Medicine and Health Sciences. Dept. of Medical Microbiology.ENGLISH ABSTRACT: Introduction: Flow cytometry has progressively replaced many traditional laboratory tests due to its greater accuracy, sensitivity and rapidity in the routine clinical settings especially clinical trails. It is a powerful tool for the measuring of chemical (the fluorochrome we add) and physical (size and complexity) characteristics of individual cells. As these instruments became major diagnostic and prognostic tools, the need for more advanced quality control, standardized procedures and proficiency testing programs increased as these instrumentations and their methodology evolve. Minor instrument settings can affect the reliability, reproducibility and sensitivity of the cytometer and should be monitored and documented in order to ensure identical conditions of measurement on a daily basis. This can be accomplished by following an Internal Quality Assurance (IQA) and/ or External Quality Assurance (EQA) program. Currently there are no such programs available in South Africa and poorer Africa countries. HIV is a global concern and the laboratories and clinics in these places are in need of such IQA programs to ensure quality of their instrumentation and accurate patient results. Quality assurance programs such as CD Chex® and UK Nequas are available but due to bad sample transport, leave the receiving laboratories with nightmares. It would be best if there was a laboratory in South Africa that could provide the surrounding laboratories with stabilized whole blood samples that can be utilized as IQA. The transport of these samples can be more efficient due to shorter distance and thus the temperature variations limited. Aims and Objectives: The aim of Chapter one is to familiarize the reader with general terminology and concepts of immunology. Chapter two describes in detail the impact stabilized whole blood had on clinical immunology concerning Quality Control and Quality Assurance. The objective of this study is to stabilize whole blood with a shelf life of greater than 30 days to serve as reference control material for South African Immunophenotyping. It is further an objective to use these in-house stabilized control samples for poorer African countries as Internal Quality Assurance reference material. It is a still further objective to stimulate various lymphocyte subsets to express activation antigens and then stabilize these cells for more specialized immunological test and can serve as a QC for those required samples. Study design: In Chapter three, the method currently used to stabilize whole blood was modified. The stability of different concentrations of a first stabilizing agent (Chromium Chloride hexahydrate) was investigated. Incubation periods and concentrations of paraformaldehyde as second stabilizing agent were investigated. Blood samples from healthy individuals (n=10) were stabilized and monitored for the routine HIV phenotypic surface antigens over a period of 40 days. These samples (n=10) were compared on the Becton Dickinson Biosciences (BD) FACSCalibur™ versus BD FACSCount™ instrumentation. Blood samples (n=3) were stabilized and monitored to identify phenotypic cell surface molecules for as long as possible. They were quantified on both flow cytrometric instruments. In addition, these stabilized samples (n=3) were investigated as control blood for calibration purposes on the BD FACSCount™ instrument. In Chapter four, lymphocytes were isolated and activated with various stimuli to express sufficient activation antigens such as CD25, CD69, HLA-DR and CD40 Ligand on the T helper cell surfaces. These activated antigens were analyzed on the BD FACSCalibur™ and further stabilized to serve as possible IQA samples in future. Results: In Chapter three, the ten individual stabilized samples had non-significant P values (P > 0.05) for CD3, CD4 and CD8 percentages and absolute values comparing day 3 until day 40. Comparing the BD FACSCalibur™ versus BD FACSCount™, resulted in a R2 = 0.9848 for CD4 absolute values and a R2 = 0.9636 for CD8 absolute values. Stabilized blood samples (n=3) were monitored for routine HIV phenotypic markers until day 84. The cells populations were easily identifiable and could be quantified on both BD FACSCalibur™ and BD FACSCount™ instruments. In Chapter four; for the activation study purposes, activated T helper lymphocytes expressed approximately 25 to 35% CD40 Ligand cell surface molecules. The stimulant of choice was Ionomycin at a 4μM concentration. Cells were incubated for four hours at 37 degree Celsius in a 5% CO2 environment. For CD69 surface expression, 6 hour incubation was optimum. The stimulus of choice in this case was 4μM Ionomycin which induced 84.21% CD69 expression in the test samples. For CD25 expression; 6 hour incubation with PHA resulted in approximately 43% of CD25 expression. For HLA-DR surface expression; 6 hour incubation with PHA resulted in approximately 43.32% of HLA-DR expression. Activated lymphocytes expressing CD40 Ligand showed stability until day 23. Activated Lymphocytes expressing CD69, CD25 and HLA-DR were stabilized in the same manner and stability could be achieved until day 16. Conclusion: This thesis was related to the preparation of control samples (IQA) designed to simulate whole blood having defined properties in clinical laboratory situations. In future kits can be developed with a low, medium and high control sample for the various immunological phenotypic determinants. Another kit can be compiled where various activation markers can be identified, quantified with a “zero”, low and high control. These whole blood IQA kits and “activation IQA kits” can be implemented for training of newly qualified staff, competency testing of staff, method development, software testing, panel settings and instrument setting testing. Control samples ideally must have a number of properties in order to be effective. For instance stability during storage times, preferably lasting more than a few weeks, reproducibility and ease of handling. These will provide the information on day-to-day variation of the technique or equipment which will enhance accuracy and improve patient care.