Browsing by Author "Lloyd, James R."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- ItemModification of cassava root starch phosphorylation enhances starch functional properties(Frontiers Media, 2018) Wang, Wuyan; Hostettler, Carmen E.; Damberger, Fred F.; Kossmann, Jens; Lloyd, James R.; Zeeman, Samuel C.Cassava (Manihot esculenta Crantz) is a root crop used as a foodstuff and as a starch source in industry. Starch functional properties are influenced by many structural features including the relative amounts of the two glucan polymers amylopectin and amylose, the branched structure of amylopectin, starch granule size and the presence of covalent modifications. Starch phosphorylation, where phosphates are linked either to the C3 or C6 carbon atoms of amylopectin glucosyl residues, is a naturally occurring modification known to be important for starch remobilization. The degree of phosphorylation has been altered in several crops using biotechnological approaches to change expression of the starch-phosphorylating enzyme GLUCAN WATER DIKINASE (GWD). Interestingly, this frequently alters other structural features of starch beside its phosphate content. Here, we aimed to alter starch phosphorylation in cassava storage roots either by manipulating the expression of the starch phosphorylating or dephosphorylating enzymes. Therefore, we generated transgenic plants in which either the wild-type potato GWD (StGWD) or a redox-insensitive version of it were overexpressed. Further plants were created in which we used RNAi to silence each of the endogenous phosphoglucan phosphatase genes STARCH EXCESS 4 (MeSEX4) and LIKE SEX4 2 (MeLSF), previously discovered by analyzing leaf starch metabolism in the model species Arabidopsis thaliana. Overexpressing the potato GWD gene (StGWD), which specifically phosphorylates the C6 position, increased the total starch-bound phosphate content at both the C6 and the C3 positions. Silencing endogenous LSF2 gene (MeLSF2), which specifically dephosphorylates the C3 position, increased the ratio of C3:C6 phosphorylation, showing that its function is conserved in storage tissues. In both cases, other structural features of starch (amylopectin structure, amylose content and starch granule size) were unaltered. This allowed us to directly relate the physicochemical properties of the starch to its phosphate content or phosphorylation pattern. Starch swelling power and paste clarity were specifically influenced by total phosphate content. However, phosphate position did not significantly influence starch functional properties. In conclusion, biotechnological manipulation of starch phosphorylation can specifically alter certain cassava storage root starch properties, potentially increasing its value in food and non-food industries.
- ItemMutations in glucan, water dikinase affect starch degradation and gametophore development in the moss physcomitrella patens(Nature Research, 2019) Mdodana, Ntombizanele T.; Jewell, Jonathan F.; Phiri, Ethel E.; Smith, Marthinus L.; Oberlander, Kenneth; Mahmoodi, Saire; Kossmann, Jens; Lloyd, James R.The role of starch degradation in non-vascular plants is poorly understood. To expand our knowledge of this area, we have studied this process in Physcomitrella patens. This has been achieved through examination of the step known to initiate starch degradation in angiosperms, glucan phosphorylation, catalysed by glucan, water dikinase (GWD) enzymes. Phylogenetic analysis indicates that GWD isoforms can be divided into two clades, one of which contains GWD1/GWD2 and the other GWD3 isoforms. These clades split at a very early stage within plant evolution, as distinct sequences that cluster within each were identified in all major plant lineages. Of the five genes we identified within the Physcomitrella genome that encode GWD-like enzymes, two group within the GWD1/GWD2 clade and the others within the GWD3 clade. Proteins encoded by both loci in the GWD1/GWD2 clade, named PpGWDa and PpGWDb, are localised in plastids. Mutations of either PpGWDa or PpGWDb reduce starch phosphate abundance, however, a mutation at the PpGWDa locus had a much greater influence than one at PpGWDb. Only mutations affecting PpGWDa inhibited starch degradation. Mutants lacking this enzyme also failed to develop gametophores, a phenotype that could be chemically complemented using glucose supplementation within the growth medium.
- ItemRepression of sex4 and like sex four2 orthologs in potato increases tuber starch bound phosphate with concomitant alterations in starch properties physical(Frontiers Media, 2018-07-23) Samodien, Ebrahim; Jewell, Jonathan F.; Loedolff, Bianke; Oberlander, Kenneth; George, Gavin M.; Zeeman, Samuel C.; Damberger, Fred F.; Van Der Vyver, Christell; Kossmann, Jens; Lloyd, James R.To examine the roles of starch phosphatases in potatoes, transgenic lines were produced where orthologs of SEX4 and LIKE SEX FOUR2 (LSF2) were repressed using RNAi constructs. Although repression of either SEX4 or LSF2 inhibited leaf starch degradation, it had no effect on cold-induced sweetening in tubers. Starch amounts were unchanged in the tubers, but the amount of phosphate bound to the starch was significantly increased in all the lines, with phosphate bound at the C6 position of the glucosyl units increased in lines repressed in StSEX4 and in the C3 position in lines repressed in StLSF2 expression. This was accompanied by a reduction in starch granule size and an alteration in the constituent glucan chain lengths within the starch molecule, although no obvious alteration in granule morphology was observed. Starch from the transgenic lines contained fewer chains with a degree of polymerization (DP) of less than 17 and more with a DP between 17 and 38. There were also changes in the physical properties of the starches. Rapid viscoanalysis demonstrated that both the holding strength and the final viscosity of the high phosphate starches were increased indicating that the starches have increased swelling power due to an enhanced capacity for hydration.
- ItemStarch trek : the search for yield(Frontiers Media, 2019) Lloyd, James R.; Kossmann, JensStarch is a plant storage polyglucan that accumulates in plastids. It is composed of two polymers, amylose and amylopectin, with different structures and plays several roles in helping to determine plant yield. In leaves, it acts as a buffer for night time carbon starvation. Genetically altered plants that cannot synthesize or degrade starch efficiently often grow poorly. There have been a number of successful approaches to manipulate leaf starch metabolism that has resulted in increased growth and yield. Its degradation is also a source of sugars that can help alleviate abiotic stress. In edible parts of plants, starch often makes up the majority of the dry weight constituting much of the calorific value of food and feed. Increasing starch in these organs can increase this as well as increasing yield. Enzymes involved in starch metabolism are well known, and there has been much research analyzing their functions in starch synthesis and degradation, as well as genetic and posttranslational regulatory mechanisms affecting them. In this mini review, we examine work on this topic and discuss future directions that could be used to manipulate this metabolite for improved yield.