Browsing by Author "Liu, Bin"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemGenomic and secretomic insight into lignocellulolytic system of an endophytic bacterium Pantoea ananatis Sd-1(BioMed Central, 2016) Ma, Jiangshan; Zhang, Keke; Liao, Hongdong; Hector, Stanton B.; Shi, Xiaowei; Li, Jianglin; Liu, Bin; Xu, Ting; Tong, Chunyi; Liu, Xuanming; Zhu, YonghuaBackground: Exploring microorganisms especially bacteria associated with the degradation of lignocellulosic biomass shows great potentials in biofuels production. The rice endophytic bacterium Pantoea ananatis Sd-1 with strong lignocellulose degradation capacity has been reported in our previous study. However, a comprehensive analysis of its corresponding degradative system has not yet been conducted. The aim of this work is to identify and characterize the lignocellulolytic enzymes of the bacterium to understand its mechanism of lignocellulose degradation and facilitate its application in sustainable energy production. Results: The genomic analysis revealed that there are 154 genes encoding putative carbohydrate-active enzymes (CAZy) in P. ananatis Sd-1. This number is higher than that of compared cellulolytic and ligninolytic bacteria as well as other eight P. ananatis strains. The CAZy in P. ananatis Sd-1 contains a complete repertoire of enzymes required for cellulose and hemicellulose degradation. In addition, P. ananatis Sd-1 also possesses plenty of genes encoding potential ligninolytic relevant enzymes, such as multicopper oxidase, catalase/hydroperoxidase, glutathione S-transferase, and quinone oxidoreductase. Quantitative real-time PCR analysis of parts of genes encoding lignocellulolytic enzymes revealed that they were significantly up-regulated (at least P < 0.05) in presence of rice straw. Further identification of secretome of P. ananatis Sd-1 by nano liquid chromatography–tandem mass spectrometry confirmed that considerable amounts of proteins involved in lignocellulose degradation were only detected in rice straw cultures. Rice straw saccharification levels by the secretome of P. ananatis Sd-1 reached 129.11 ± 2.7 mg/gds. Correspondingly, the assay of several lignocellulolytic enzymes including endoglucanase, exoglucanase, β-glucosidase, xylanase-like, lignin peroxidase-like, and laccase-like activities showed that these enzymes were more active in rice straw relative to glucose substrates. The high enzymes activities were not attributed to bacterial cell densities but to the difference of secreted protein contents. Conclusion: Our results indicate that P. ananatis Sd-1 can produce considerable lignocellulolytic enzymes including cellulases, hemicellulases, and ligninolytic relevant enzymes. The high activities of those enzymes could be efficiently induced by lignocellulosic biomass. This identified degradative system is valuable for the lignocellulosic bioenergy industry.
- ItemInvolvement of Fenton chemistry in rice straw degradation by the lignocellulolytic bacterium Pantoea ananatis Sd-1(BioMed Central, 2016) Ma, Jiangshan; Zhang, Keke; Huang, Mei; Hector, Stanton B.; Liu, Bin; Tong, Chunyi; Liu, Qian; Zeng, Jiarui; Gao, Yan; Xu, Ting; Liu, Ying; Liu, Xuanming; Zhu, YonghuaBackground: Lignocellulolytic bacteria have revealed to be a promising source for biofuel production, yet the underlying mechanisms are still worth exploring. Our previous study inferred that the highly efficient lignocellulose degradation by bacterium Pantoea ananatis Sd-1 might involve Fenton chemistry (Fe2+ + H2O2 + H+ → Fe3+ + OH · + H2O), similar to that of white-rot and brown-rot fungi. The aim of this work is to investigate the existence of this Fenton-based oxidation mechanism in the rice straw degradation process of P. ananatis Sd-1. Results: After 3 days incubation of unpretreated rice straw with P. ananatis Sd-1, the percentage in weight reduction of rice straw as well as its cellulose, hemicellulose, and lignin components reached 46.7, 43.1, 42.9, and 37.9 %, respectively. The addition of different hydroxyl radical scavengers resulted in a significant decline (P < 0.001) in rice straw degradation. Pyrolysis gas chromatography–mass spectrometry and Fourier transform infrared spectroscopy analysis revealed the consistency of chemical changes of rice straw components that exists between P. ananatis Sd-1 and Fenton reagent treatment. In addition to the increased total iron ion concentration throughout the rice straw decomposition process, the Fe3+-reducing capacity of P. ananatis Sd-1 was induced by rice straw and predominantly contributed by aromatic compounds metabolites. The transcript levels of the glucose-methanol-choline oxidoreductase gene related to hydrogen peroxide production were significantly up-regulated (at least P < 0.01) in rice straw cultures. Higher activities of GMC oxidoreductase and less hydrogen peroxide concentration in rice straw cultures relative to glucose cultures may be responsible for increasing rice straw degradation, which includes Fenton-like reactions. Conclusions: Our results confirmed the Fenton chemistry-assisted degradation model in P. ananatis Sd-1. We are among the first to show that a Fenton-based oxidation mechanism exists in a bacteria degradation system, which provides a new perspective for how natural plant biomass is decomposed by bacteria. This degradative system may offer an alternative approach to the fungi system for lignocellulosic biofuels production.