Browsing by Author "Lekalakala, Ruth"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemLaboratory based antimicrobial resistance surveillance for Pseudomonas aeruginosa blood isolates from South Africa(Journal of Infection in Developing Countries, 2018) Singh-Moodley, Ashika; Duse, Adriano; Naicker, Preneshni; Kularatne, Ranmini; Nana, Trusha; Lekalakala, Ruth; Mbelle, Nontombi; Dawood, Halima; Han, Khine Swe Swe; Ramjathan, Praksha; Bhola, Prathna; Whitelaw, Andrew; Perovic, OlgaIntroduction: Antimicrobial resistant bacterial infections are widespread globally and increases in antimicrobial resistance presents a major threat to public health. Pseudomonas aeruginosa is an opportunistic healthcare-associated pathogen with high rates of morbidity and mortality and an extensive range of resistance mechanisms. This study describes the antibiotic susceptibility profiles of P. aeruginosa isolates from patients with bacteraemia submitted by sentinel laboratories in South Africa from 2014 to 2015. Methodology: Organism identification and antimicrobial susceptibility testing were done using automated systems. Molecular methods were used to detect common resistance genes and mechanisms. Results: Overall the susceptibility was high for all antibiotics tested with a decrease over the two-year period. There was no change in the MIC50 and MIC90 breakpoints for all antibiotics from 2014 to 2015. The MIC50 was within the susceptible breakpoint range for most antibiotics and the MIC90 was within the susceptible breakpoint range for colistin only. Phenotypically carbapenem non-susceptible isolates harboured the following plasmid-mediated genes: blaVIM (n = 81, 12%) and blaGES (n = 6, 0.9%); blaNDM (n = 4, 0.6%) and blaOXA-48 and variants (n = 3, 0.45%). Porin deletions were observed in one meropenem non-susceptible isolate only, and multi-drug resistance efflux pumps were expressed in the majority of the non-susceptible isolates investigated. BlaVEB-1, blaIMP and blaKPC were not detected. Conclusion: The prevalence of resistance to commonly used antibacterial agents was low for P. aeruginosa isolates and similarly, tested resistance mechanisms were detected in a relatively small proportion of isolates. Findings in this study represent baseline information for understanding antimicrobial susceptibility patterns in P. aeruginosa isolates from blood. Our surveillance report may assist in contributing to hospital treatment guidelines.
- ItemNational sentinel site surveillance for antimicrobial resistance in Klebsiella pneumoniae isolates in South Africa, 2010-2012(Health & Medical Publishing Group, 2014-08) Perovic, Olga; Singh-Moodley, Ashika; Duse, Adriano; Bamford, Colleen; Elliott, G.; Swe-Han, Khine Swe; Kularatne, Ranmini; Lowman, Warren; Whitelaw, Andrew; Nana, Trusha; Wadula, Jeanette; Lekalakala, Ruth; Saif, Adrienne; Fortuin De-Smit, Melony; Marais, ElseBackground. The increasing rates of antimicrobial resistance observed in the nosocomial pathogen Klebsiella pneumoniae are of major public health concern worldwide. Objectives. To describe the antibiotic susceptibility profiles of K. pneumoniae isolates from bacteraemic patients submitted by sentinel laboratories in five regions of South Africa from mid-2010 to mid-2012. Molecular methods were used to detect the most commonly found extended-spectrum beta-lactamase (ESBL) and carbapenemase resistance genes. Methods. Thirteen academic centres serving the public healthcare sector in Gauteng, KwaZulu-Natal, Free State, Limpopo and Western Cape provinces submitted K. pneumoniae isolates from patients with bloodstream infections. Vitek 2 and MicroScan instruments were used for organism identification and susceptibility testing. Multiplex polymerase chain reactions (PCRs) were used to detect blaCTX-M, blaSHV and blaTEM genes in a proportion of the ESBL isolates. All isolates exhibiting reduced susceptibility to carbapenems were PCR tested for blaKPC and blaNDM-1 resistance genes. Results. Overall, 68.3% of the 2 774 isolates were ESBL-positive, showing resistance to cefotaxime, ceftazidime and cefepime. Furthermore, 46.5% of all isolates were resistant to ciprofloxacin and 33.1% to piperacillin-tazobactam. The major ESBL genes were abundantly present in the sample analysed. Most isolates (95.5%) were susceptible to the carbapenems tested, and no isolates were positive for blaKPC or blaNDM-1. There was a trend towards a decrease in susceptibility to most antibiotics. Conclusion. The high proportion of ESBL-producing K. pneumoniae isolates observed, and the prevalence of ESBL genes, are of great concern. Our findings represent a baseline for further surveillance in SA, and can be used for policy and treatment decisions.