Browsing by Author "Le Maitre, N. C."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemThe biodiversity hotspot as evolutionary hot-bed : spectacular radiation of Erica in the Cape Floristic Region(BioMed Central, 2016-09-17) Pirie, M. D.; Oliver, E. G. H.; De Kuppler, A. Mugrabi; Gehrke, B.; Le Maitre, N. C.; Kandziora, M.; Bellstedt, D. U.Background: The disproportionate species richness of the world’s biodiversity hotspots could be explained by low extinction (the evolutionary “museum”) and/or high speciation (the “hot-bed”) models. We test these models using the largest of the species rich plant groups that characterise the botanically diverse Cape Floristic Region (CFR): the genus Erica L. We generate a novel phylogenetic hypothesis informed by nuclear and plastid DNA sequences of c. 60 % of the c. 800 Erica species (of which 690 are endemic to the CFR), and use this to estimate clade ages (using RELTIME; BEAST), net diversification rates (GEIGER), and shifts in rates of diversification in different areas (BAMM; MuSSE). Results: The diversity of Erica species in the CFR is the result of a single radiation within the last c. 15 million years. Compared to ancestral lineages in the Palearctic, the rate of speciation accelerated across Africa and Madagascar, with a further burst of speciation within the CFR that also exceeds the net diversification rates of other Cape clades. Conclusions: Erica exemplifies the “hotbed” model of assemblage through recent speciation, implying that with the advent of the modern Cape a multitude of new niches opened and were successively occupied through local species diversification.
- ItemFloral color, anthocyanin synthesis gene expression and control in Cape Erica species(Frontiers Media, 2019-11-28) Le Maitre, N. C.; Pirie, Michael David; Bellstedt, Dirk U.Introduction: The Cape Floristic Region (CFR) is a biodiversity hotspot, recognized globally for its unusually high levels of endemism. The origins of this biodiversity are a long-standing topic of research. The largest “Cape clade,” Erica, radiated dramatically in the CFR, its ca. 690 species arising within 10–15 Ma. Notable between- and within-species flower color variation in Erica may have contributed to the origins of species diversity through its impact on pollinator efficiency and specificity. Methods: We investigate the expression and function of the genes of the anthocyanin biosynthesis pathway that controls floral color in 12 Erica species groups using RT-qPCR and UPLC-MS/MS. Results: Shifts from ancestral pink- or red- to white- and/or yellow flowers were associated with independent losses of single pathway gene expression, abrogation of the entire pathway due to loss of the expression of a transcription factor or loss of function mutations in pathway genes. Discussion: Striking floral color shifts are prevalent amongst the numerous species of Cape Erica. These results show independent origins of a palette of mutations leading to such shifts, revealing the diverse genetic basis for potentially rapid evolution of a speciation-relevant trait.