Browsing by Author "Kemp, Bernitia"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- ItemThe effect of biochar application to sandy soil on nitrogen nutrition of maize (Zea mays)(Stellenbosch : Stellenbosch University, 2023-03) Kemp, Bernitia; Rozanov, Andrei Borisivich; Hardie-Pieters, Ailsa G.; Stellenbosch University. Faculty of Agrisciences. Dept. of Soil Science.ENGLISH ABSTRACT: Sustainable agricultural development requires a holistic systems approach to address environmental, economic, and social challenges associated with agricultural productivity. Sustainable management of sandy soil in agricultural systems requires fertilization strategies that maintain and enhance soil physio-chemical properties while sustaining optimum crop yield for the long run. Biochar production and utilization are linked directly to agriculture, the environment, and sustainable development. Biochar application is widely considered a sustainable management strategy to sequester carbon in the soil and improve soil properties. Reservations have been expressed in the literature regarding this soil amendment, particularly regarding the possible adverse effects of biochar application to soils on nitrogen nutrition of crops. A pot trial was conducted to understand the effects of biochar application on the nitrogen nutrition of maize, by investigating the impact of locally produced biochar application on the growth response (vigour) of maize and its foliar N content. This study compared the effect of biochar addition to soil with other soil amendments commonly used in agricultural systems. To clarify, this study compared biochar with compost and nitrogen fertilizer, applied independently and in combinations. Biochar was derived from black wattle pyrolyzed at 730 ° C. This study has shown that the compound application of biochar with the recommended dosage of nitrogen fertilizer had a clear positive synergistic effect on the performance of maize. This positive synergistic effect may be attributed to various improvements in soil quality typically observed in biochar-amended soils. Applying biochar had a liming effect on the acidic sandy soil when used on its own and in combination with organic/ inorganic fertilizers. The potentially mineralizable N in the soil did not differ for any treatments relative to the control. Biochar may serve as a long-term soil management strategy in agricultural systems to effectively manage nutrients, enhance the nutrient use efficiency of cropping systems, reduce N loss and subsequently limit environmental pollution, and reuse and recycle waste, while increasing agricultural production. Biochar should be designed according to the context of any given agricultural system and modified to optimally perform specific functions. Subsequently, the production and utilization of biochar will be not only efficient and profitable but also sustainable. In addition, this study emphasized that excessive N fertilization is both unnecessary and an unsustainable soil management strategy. Thus, balanced fertilization schemes may be highly beneficial for the productivity of maize cropping systems. Additional studies are required to enhance future biochar development. Especially since biochar production can significantly contribute to the sustainable development of economies, society, agricultural systems, and the environment.