Browsing by Author "Kamper, Francois"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemOn the convergence of gaussian belief propagation with nodes of arbitrary size(Journal of Machine Learning Research, 2019) Kamper, Francois; Steel, Sarel J.; Du Preez, Johan A.This paper is concerned with a multivariate extension of Gaussian message passing applied to pairwise Markov graphs (MGs). Gaussian message passing applied to pairwise MGs is often labeled Gaussian belief propagation (GaBP) and can be used to approximate the marginal of each variable contained in the pairwise MG. We propose a multivariate extension of GaBP (we label this GaBP-m) that can be used to estimate higher-dimensional marginals. Beyond the ability to estimate higher-dimensional marginals, GaBP-m exhibits better convergence behavior than GaBP, and can also provide more accurate univariate marginals. The theoretical results of this paper are based on an extension of the computation tree analysis conducted on univariate nodes to the multivariate case. The main contribution of this paper is the development of a convergence condition for GaBP-m that moves beyond the walk-summability of the precision matrix. Based on this convergence condition, we derived an upper bound for the number of iterations required for convergence of the GaBP-m algorithm. An upper bound on the dissimilarity between the approximate and exact marginal covariance matrices was established. We argue that GaBP-m is robust towards a certain change in variables, a property not shared by iterative solvers of linear systems, such as the conjugate gradient (CG) and preconditioned conjugate gradient (PCG) methods. The advantages of using GaBP-m over GaBP are also illustrated empirically.
- ItemRegularised Gaussian belief propagation(Stellenbosch : Stellenbosch University, 2018-12) Kamper, Francois; Steel, S. J.; Du Preez, J. A.; Stellenbosch University. Faculty of Economic and Management Sciences. Dept. of Statistics and Actuarial Science.ENGLISH SUMMARY : Belief propagation (BP) has been applied as an approximation tool in a variety of inference problems. BP does not necessarily converge in loopy graphs and, even if it does, is not guaranteed to provide exact inference. Even so, BP is useful in many applications due to its computational tractability. On a high level this dissertation is concerned with addressing the issues of BP when applied to loopy graphs. To address these issues we formulate the principle of node regularisation on Markov graphs (MGs) within the context of BP. The main contribution of this dissertation is to provide mathematical and empirical evidence that the principle of node regularisation can achieve convergence and good inference quality when applied to a MG constructed from a Gaussian distribution in canonical parameterisation. There is a rich literature surrounding BP on Gaussian MGs (labelled Gaussian belief propagation or GaBP), and this is known to suffer from the same problems as general BP on graphs. GaBP is known to provide the correct marginal means if it converges (this is not guaranteed), but it does not provide the exact marginal precisions. We show that our regularised BP will, with sufficient tuning, always converge while maintaining the exact marginal means. This is true for a graph where nodes are allowed to have any number of variables. The selection of the degree of regularisation is addressed through the use of heuristics. Our variant of GaBP is tested empirically in a variety of settings. We show that our method outperforms other variants of GaBP available in the literature, both in terms of convergence speed and quality of inference. These improvements suggest that the principle of node regularisation in BP should be investigated in other inference problems. A by-product of GaBP is that it can be used to solve linear systems of equations; the same is true for our variant and in this context we make an empirical comparison with the conjugate gradient (CG) method.