Browsing by Author "Jacklin, D. M."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemLaboratory method design for investigating the phytoremediation of polluted water (with erratum)(South African Water Research Commission, 2019) Jacklin, D. M.; Brink, I. C.; De Waal, J.The performance of plants to remove, remediate or immobilise environmental contaminants in a growth matrix through natural biological, chemical or physical activities was studied in a laboratory phytoremediation system. This study aimed to develop a novel phytoremediation system capable of investigating the remediation of agricultural pollutants by individual and multiple plant species. The designed system analysed community phytoremediation by uniquely implementing multiple plant species within the same growth silo, with indigenous and alien assemblages compared to establish community performance, highlighting the importance of biodiversity in plant assemblages. The constructed system successfully analysed the phytoremediatory capabilities of plant species within the critically endangered Renosterveld vegetation type, with unvegetated soil controls included to illustrate the pollutant removal efficiency of plants only. Growth silos were constructed from PVC piping and irrigated with drippers from a submersible pump. Eighteen different plant species were included in the experiment, i.e., 14 indigenous species, 3 invasive alien plant (IAP) species, and Palmiet. Five agricultural pollutant parameters were analysed, i.e., for fertilizers NH3-N, NO3--N and PO43--P and for herbicide contamination using two glyphosate concentrations. The growth silos and unvegetated soil control were irrigated using a pollutant–municipal water solution at 3-day intervals. The multiple plants per silo design approach seeks to contribute to the limited literature pertaining heterogeneity importance, by comparing the pollutant removal performance of plant assemblages. Community comparison further investigated the biofilter implementation potential of indigenous South African plants as an alternative to their more invasive alien counterparts, adding to the knowledge base of plant-based phytoremediation by indigenous South African plant species. The laboratory phytoremediation system successfully measured the agricultural pollutant removal performance of individual plants and vegetative communities, with soil remediation influence acknowledged. The proposed system is a simple and inexpensive method for obtaining the plant-based biofiltration efficiency of individual and multiple plant species.
- ItemThe potential use of plant species within a Renosterveld landscape for the phytoremediation of glyphosate and fertiliser(Water Research Commission, 2020-01) Jacklin, D. M.; Brink, I. C.; De Waal, J.ENGLISH ABSTRACT: In South Africa, fertiliser and herbicide pollutants resulting from agricultural practices indirectly lead to the degradation of surface freshwater and groundwater quality. Nitrogen and phosphorus, and glyphosate, derived from agricultural fertiliser and herbicide applications, respectively, contribute to watercourse toxicity. Adjacent to many of the surface freshwater systems are some of South Africa's most productive agricultural lands, where natural ecosystems are converted to croplands, resulting in the degradation of natural vegetation and deterioration of freshwater quality. The critically endangered status of some Renosterveld vegetation types is the product of agricultural expansion, nutrient loading through fertilisation and the spraying of herbicides. A buffer of Renosterveld vegetation along river corridors may contribute to the remediation of agricultural pollutants prior to entering watercourses. The utilisation of wetland plants occurring within Renosterveld for agricultural pollutant extraction can increase river corridor biodiversity, creating indigenous refuges and facilitating habitat connectivity. A laboratory phytoremediation system was designed and constructed to investigate the pollutant-removal potential of indigenous species occurring in Renosterveld vegetation (amongst other areas), compared with commonly used invasive alien plants (IAP) in floating wetland designs. Five pollutant parameters - ammonia, nitrate, orthophosphate and two glyphosate concentrations - reflect environmental stresses on 14 wetland species naturally occurring within Renosterveld vegetation. Effluent analyses indicated significant removal efficiencies for the indigenous vegetation across both fertiliser and herbicide pollutants, with the two most effective species identified as Phragmites australis and Cyperus textilis, with 95.87% and 96.42% removal, respectively. All wetland species displayed greater pollutant removal than the unvegetated soil control and when compared to an IAP and palmiet assemblage, indicated similar pollutant-removal efficiencies, justifying their use as an acceptable alternative.