Browsing by Author "Isaacs, Ashwin Wayne"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemThe effect of melatonin treatment on doxorubicin-induced skeletal muscle atrophy within a cancer model(Stellenbosch : Stellenbosch University, 2018-12) Isaacs, Ashwin Wayne; Engelbrecht, Anna-Mart; Loos, Ben; Myburgh, Kathryn H.; Stellenbosch University. Faculty of Science. Dept. of Physiological Sciences.ENGLISH ABSTRACT: Background and Aim: Skeletal muscle atrophy is a major concern in patients suffering with malignancy. Chemotherapeutic agents, such as doxorubicin (DOX), can further exacerbate this loss of skeletal muscle. Although many cancer patients on chemotherapeutic agents suffer from this condition, there are no therapies routinely used to moderate muscle atrophy. The aim of the study was to investigate whether melatonin (MLT) can attenuate doxorubicin‐induced skeletal muscle and myotube atrophy in an in vivo rodent model of breast cancer as well as in an in vitro model of DOXinduced myotoxicity respectively. The safe and cost‐effective role of melatonin as a possible therapy to limit the burden of doxorubicin‐induced muscle toxicity in cancer patients serves as rationale for the in vivo study and the in vitro study allows for the exploration of more invasive mechanistic aspects using the cell lines, which would not be possible when viewing excised tissue. Methods: Female Sprague‐Dawley rats were inoculated with LA7 cancer cells and were randomly assigned to six groups: Control, Tumour control (TCON), Vehicle control (VEH), MLT, DOX and DOX + MLT (DM). Prophylactic treatment of MLT (6 mg/kg) was administered in drinking water daily and rats received three intraperitoneal injections of DOX (4 mg/kg, 3 times at 3‐day intervals). Following sacrifice blood samples (whole blood counts) and skeletal muscle tissue were collected for histological, immunoblot, antioxidant capacity and immunofluorescence analyses. Furthermore, C2C12 myoblasts grown to confluency and differentiated into myotubes were pretreated with MLT (50 nM) for 48h followed by DOX treatment (0.8 μM) for 24h. The effect of MLT treatment on C2C12 myotube diameter, mitochondrial reactive oxygen species (mtROS) production, sirtuin levels and autophagy activity was then assessed. Results: DOX treatment significantly reduced animal weight (279.1 ± 21.34 g vs. 222.2 ± 20.40 g, p˂0.0001) compared to DM weight (281.5 ± 7.11 g vs. 284.0 ± 6.53 g) and gastrocnemius muscle weight (1.4 ± 0.13 g vs. 0.99 ± 0.076 g, p˂0.0001) and cross sectional area (CSA), while increasing markers of muscle degradation compared to MLT treated groups. Serum myoglobin levels were significantly elevated in the DOX group compared to the DM group (572.6 ± 444.19 ng/mL vs. 218.2 ± 83.66 ng/mL, p˂0.0001); while, white & red blood cell counts (WBC & RBC) were significantly decreased in the DOX group compared to the MLT treated groups respectively (2.06 ± 1.59 x 109L‐1 vs. 4.13 ± 1.56 x 109L‐1 & 4.00 ± 1.52 x 1012L‐1 vs. 5.66 ± 1.03 x 1012L1, p˂0.0001). Furthermore, MLT treatment significantly increased intramuscular antioxidant capacity, mitochondrial biogenesis and satellite cell number. In vitro DOX treatment resulted in increased myotube atrophy, mitochondrial ROS levels and these effects were significantly reduced with MLT pre‐treatment. Discussion: The improvement in animal weight, muscle to body weight ratio, muscle CSA as well as the reduction in myoglobin levels in the treatment groups compared to the DOX group indicate that MLT protects against DOX‐induced atrophy. Moreover, MLT pre‐treatment improved circulating levels of WBC & RBC compared to the DOX only group and attenuated skeletal muscle atrophy by reducing cell apoptosis and increasing satellite cell number suggesting that MLT assists with muscle repair. The in vitro study indicated that DOX‐induced myotube atrophy was preceded by increases in mitochondrial ROS. Conclusion: Results indicate that pre‐treatment with exogenous MLT protects against skeletal muscle wasting induced by DOX in a pre‐cachectic tumour‐bearing rat model.
- ItemMuscle damage and adaptation in response to plyometric jumping(Stellenbosch : Stellenbosch University, 2012-03) Isaacs, Ashwin Wayne; Myburgh, Kathryn H.; Macaluso, Filippo; Stellenbosch University. Faculty of Science. Dept. of Physiological Sciences.ENGLISH ABSTRACT: The aim of the study was to investigate skeletal muscle changes induced by an acute bout of plyometric exercise before and after plyometric training. The study consisted of an acute study and training intervention study. The acute study, investigated whether direct evidence of ultrastructural damage and identification of indirect factors were more evident in subjects presenting with rhabdomyolysis. Moreover the training intervention study investigated whether plyometric training would protect the muscle from ultrastructural damage and rhabdomyolysis. During the acute intervention, twenty six healthy untrained individuals completed an acute bout of plyometric exercise (10 x 10 squat-jumps, 1 min rest). After, thirteen subjects continued with the training intervention. Eight of these subjects completed 8 weeks of plyometric jump training, while five subjects were instructed to rest from physical activity for 8 weeks. Seven days after the final training session the training and rest group repeated a second acute bout of plyometric exercise. Acute Study: Creatine kinase (CK) activity increased significantly following the single bout of plyometric exercise in all subjects (baseline: 129 to day 4: 5348 U/l). This was accompanied by an increase in perceived pain, C-reactive protein (CRP) a marker of inflammation as well as white blood cells (WBCs). Electron micrographs of muscle biopsies taken 3 days post exercise showed evidence of ultrasructural damage and membrane damage was apparent by immunofluorescence by the loss of dystrophin staining. A stretch of the c-terminus of titin was observed by immunogold, and western blot analysis indicated an increase in calpain-3 autolysis. Based on individual CK responses (CK range: 153-71,024 U/L at 4days after exercise) the twenty six subjects were divided into two groups, namely the high (n=10) and low responders (n=16). Training intervention: Following training the trained group did not experience: a rise of CK activity (110.0 U/l), perceived pain, CRP, WBCs, Z-line streaming, a stretch of titin or calpain-3 activation; while in the control group only two subjects presented with Z-line streaming. The results indicate that high responders have a more pronounced inflammatory response compared to low responders after eccentric exercise, therefore more WBCs and more specifically neutrophils are recruited to damaged areas resulting in greater membrane damage by respiratory burst in high responders. This damage can be limited with training by remodelling sarcomeric proteins via calpain activation resulting in the stable assembly of proteins in the sarcomere preventing the release of proteins.