Browsing by Author "Huisamen, Nicola"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemAssessment of microbial levels in the Plankenburg and Eerste Rivers and subsequent carry-over to fresh produce using source tracking as indicator(Stellenbosch : Stellenbosch University, 2012-03) Huisamen, Nicola; Sigge, G. O.; Britz, T. J.; Stellenbosch University. Faculty of AgriSciences. Dept. of Food Science.ENGLISH ABSTRACT: The agricultural sector of South Africa is currently facing a serious water crisis. The decreased availability of water as a result of climate change and the constantly growing population has left many farmers increasingly dependant on surface water as primary source of irrigation. Urbanisation along with out-dated and insufficient wastewater treatment works have all contributed to polluting large volumes of these resources. Consequently, many farmers have been forced to use irrigation water, not only of poor quality, but often water which has been polluted with untreated sewage. As a result, this project aimed at investigating the link between the quality of irrigation water and the impact on the safety of fresh produce. A base-line of the microbial load at three sites along the Plankenburg and Eerste Rivers was established using standard microbial methods for the detection of indicator organisms such as total and faecal coliforms, Escherichia coli and Enterococci as well as potential pathogens that included Salmonella, Listeria, Staphylococcus, endosporeformers and aerobic colony counts. Chemical parameters such as pH, alkalinity, conductivity and chemical oxygen demand (COD) were also monitored, but were not correlated to microbial pollution levels in the rivers. High faecal coliform and E. coli concentrations, ranging from 310 to 7 x 106 cfu.100 mL-1 and 230 to 7 x 106 cfu.100 mL-1, respectively, were detected. The recommended irrigation water guidelines of ≤1 000 (WHO, 1989) and ≤4 000 cfu.100 mL-1 (DWAF, 2008) for faecal coliforms and E. coli were exceeded, indicating faecal pollution and thus a high health risk. This health risk was confirmed when potential pathogens such as Aerococcus viridans, Klebsiella, Listeria monocytogenes and Salmonella typhimurium were detected at all three sites. The carryover of organisms from rivers to produce (green beans and grapes) was investigated by comparing the microbial population of the Plankenburg and Eerste Rivers to the population recovered from irrigation water and the surface of fresh produce. Faecal coliforms, E. coli, Aerococcus viridans, Enterobacter aerogenes, Klebsiella, L. innocua, L. grayi, L. monocytogenes and Staphylococcus aureus were detected in all three sample types, indicating a similarity between the microbial populations found in the river, the irrigation water and produce. Thus, the transfer of potential pathogens from the rivers to produce is a strong possibility. The build-up of organisms on the surface of green beans as a result of multiple irrigations was also confirmed by an increase in faecal coliform concentrations from initial concentrations of none detected to 44 000 cfu.100 mL-1 over a 10 day irrigation period. Finally, microbial source-tracking techniques including multi-antibiotic resistance (MAR) profiling, and the API 20E classification system were used to determine genotypic and phenotypic characteristics of 92 faecal isolates (from irrigation water and produce) and 13 reference strains. Numerical classification systems was used to classify the 105 faecal isolates according to the degree of similarity between the genotypic and phenotypic characteristics of the 105 isolates. A high degree of similarity indicates a high probability that isolates originate from the same strain and therefore from the same source, thereby confirming the transfer of organisms Faecal isolates (93 and 98%, respectively) were found to be resistant to Vancomycin at both the 5 and 30 μg concentrations. The majority of isolates presented some resistance to Erythromycin (15 μg) and Ampicillin (25 μg), with 82% of isolates presenting an inhibition zone ≤4 mm. Isolates were sensitive towards Ciprofloxacin (1 and 5 μg), Ofloxacin (15 μg), Ceftriaxone (30 μg) and Cefotaxime (5 μg), which were able to inhibit the growth of 79.8, 93.3, 79.8, 88.5 and 71.2% of the isolates, respectively. The 13 medical reference strains all presented different genotypic and phenotypic characteristics and thereby indicated a high degree of variability between isolates from the same species. Finally, 35% of the isolates could be grouped together based on similar genotypic and phenotypic characteristics, therefore, more than a third of the faecal isolates obtained from the surface of the fresh produce was as a result of faecal contaminants in the irrigation water. It could therefore be concluded that a health risk is associated with the water from the Plankenburg and to a lesser extent, Eerste River when used as source of irrigation, thereby risking the transfer of potentially harmful organisms, present in the rivers as result of faecal pollution, to the surface of fresh produce.
- ItemEscherichia coli with virulence factors and multidrug resistance in the Plankenburg River(Academy of Science of South Africa, 2014) Lamprecht, Corne; Romanis, Marco; Huisamen, Nicola; Carinus, Anneri; Schoeman, Nika; Sigge, G. O.; Britz, Trevor J.Escherichia coli is a natural inhabitant of the gut and E. coli levels in water are considered internationally to be an indication of faecal contamination. Although not usually pathogenic, E. coli has been linked to numerous foodborne disease outbreaks, especially those associated with fresh produce. One of the most common ways through which E. coli can be transferred onto fresh produce is if contaminated water is used for irrigation. In this study, a total of 81 confirmed E. coli strains were isolated from the Plankenburg River as part of three separate studies over 3 years. During sampling, E. coli levels in the river were above the accepted levels set by the World Health Organization and the South African Department of Water Affairs and Forestry for safe irrigation of fresh produce, which indicates that transfer of E. coli during irrigation is highly probable. Multiplex polymerase chain reaction screening for pathogenic gene sequences revealed one enteroaggregative positive strain and four enteropathogenic positive strains. The four enteropathogenic strains were also found to be resistant to three or more critically and highly important antibiotics and were therefore classified as multidrug resistant strains. These results show that E. coli with enteropathogenic potential and multiple antimicrobial resistance properties has persisted over time in the Plankenburg River.