Browsing by Author "Howe, Rawleigh"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- ItemAfrica-wide evaluation of host biomarkers in QuantiFERON supernatants for the diagnosis of pulmonary tuberculosis(Nature Research, 2018-02-08) Chegou, Novel N.; Sutherland, Jayne S.; Namuganga, Anna-Ritah; Corstjens, Paul L. A. M.; Geluk, Annemieke; Gebremichael, Gebremedhin; Mendy, Joseph; Malherbe, Stephanus; Stanley, Kim; Van Der Spuy, Gian D.; Kriel, Magdalena; Loxton, Andre G.; Kriel, Belinda; Simukonda, Felanji; Bekele, Yonas; Sheehama, Jacob A.; Nelongo, Josefina; Van Der Vyver, Marieta; Gebrexabher, Atsbeha; Hailu, Habteyes; Esterhuyse, Maria M.; Rosenkrands, Ida; Aagard, Claus; Kidd, Martin; Kassa, Desta; Mihret, Adane; Howe, Rawleigh; Cliff, Jacqueline M.; Crampin, Amelia C.; Mayanja-Kizza, Harriet; Kaufmann, Stefan H. E.; Dockrell, Hazel M.; Ottenhoff, Tom H. M.; Walzl, Gerhard; AE-TBC consortiumWe investigated host-derived biomarkers that were previously identified in QuantiFERON supernatants, in a large pan-African study. We recruited individuals presenting with symptoms of pulmonary TB at seven peripheral healthcare facilities in six African countries, prior to assessment for TB disease. We then evaluated the concentrations of 12 biomarkers in stored QuantiFERON supernatants using the Luminex platform. Based on laboratory, clinical and radiological findings and a pre-established algorithm, participants were classified as TB disease or other respiratory diseases(ORD). Of the 514 individuals included in the study, 179(34.8%) had TB disease, 274(51.5%) had ORD and 61(11.5%) had an uncertain diagnosis. A biosignature comprising unstimulated IFN-γ, MIP-1β, TGF-α and antigen-specific levels of TGF-α and VEGF, identified on a training sample set (n = 311), validated by diagnosing TB disease in the test set (n = 134) with an AUC of 0.81(95% CI, 0.76–0.86), corresponding to a sensitivity of 64.2%(95% CI, 49.7–76.5%) and specificity of 82.7%(95% CI, 72.4–89.9%). Host biomarkers detected in QuantiFERON supernatants can contribute to the diagnosis of active TB disease amongst people presenting with symptoms requiring investigation for TB disease, regardless of HIV status or ethnicity in Africa.
- ItemAnalysis of host responses to secreted, latent and reactivation Mycobacterium tuberculosis antigens in a multi-site study of subjects with different TB and HIV infection states in sub-Saharan Africa(Public Library of Science, 2013-09-10) Sutherland, Jayne S.; Lalor, Maeve K.; Black, Gillian F.; Ambrose, Lyn R.; Loxton, Andre G.; Chegou, Novel N.; Kassa, Desta; Mihret, Adane; Howe, Rawleigh; Mayanja-Kizza, Harriet; Gomez, Marie P.; Donkor, Simon; Franken, Kees; Boom, W. Henry; Thiel, Bonnie A.; Crampin, Amelia C.; Hanekom, Willem; Klein, Michel R.; Parida, Shreemanta K.; Ota, Martin; Walzl, Gerhard; Ottenhoff, Tom H. M.; Dockrell, Hazel M.; Kaufmann, Stefan H. E.Background: Tuberculosis (TB) remains a global health threat with 9 million new cases and 1.4 million deaths per year. In order to develop a protective vaccine, we need to define the antigens expressed by Mycobacterium tuberculosis (Mtb), which are relevant to protective immunity in high-endemic areas. Methods: We analysed responses to 23 Mtb antigens in a total of 1247 subjects with different HIV and TB status across 5 geographically diverse sites in Africa (South Africa, The Gambia, Ethiopia, Malawi and Uganda). We used a 7-day whole blood assay followed by IFN-γ ELISA on the supernatants. Antigens included PPD, ESAT-6 and Ag85B (dominant antigens) together with novel resuscitation-promoting factors (rpf), reactivation proteins, latency (Mtb DosR regulon-encoded) antigens, starvation-induced antigens and secreted antigens. Results: There was variation between sites in responses to the antigens, presumably due to underlying genetic and environmental differences. When results from all sites were combined, HIV- subjects with active TB showed significantly lower responses compared to both TST- and TST+ contacts to latency antigens (Rv0569, Rv1733, Rv1735, Rv1737) and the rpf Rv0867; whilst responses to ESAT-6/CFP-10 fusion protein (EC), PPD, Rv2029, TB10.3, and TB10.4 were significantly higher in TST+ contacts (LTBI) compared to TB and TST- contacts fewer differences were seen in subjects with HIV co-infection, with responses to the mitogen PHA significantly lower in subjects with active TB compared to those with LTBI and no difference with any antigen. Conclusions: Our multi-site study design for testing novel Mtb antigens revealed promising antigens for future vaccine development. The IFN-γ ELISA is a cheap and useful tool for screening potential antigenicity in subjects with different ethnic backgrounds and across a spectrum of TB and HIV infection states. Analysis of cytokines other than IFN-γ is currently on-going to determine correlates of protection, which may be useful for vaccine efficacy trials.
- ItemCombination of gene expression patterns in whole blood discriminate between tuberculosis infection states(BioMed Central, 2014-05) Mihret, Adane; Loxton, Andre G.; Bekele, Yonas; Kaufmann, Stefan H. E.; Kidd, Martin; Haks, Marielle C.; Ottenhoff, Tom H. M.; Aseffa, Abraham; Howe, Rawleigh; Walzl, GerhardBackground Genetic factors are involved in susceptibility or protection to tuberculosis (TB). Apart from gene polymorphisms and mutations, changes in levels of gene expression, induced by non-genetic factors, may also determine whether individuals progress to active TB. Methods We analysed the expression level of 45 genes in a total of 47 individuals (23 healthy household contacts and 24 new smear-positive pulmonary TB patients) in Addis Ababa using a dual colour multiplex ligation-dependent probe amplification (dcRT-MLPA) technique to assess gene expression profiles that may be used to distinguish TB cases and their contacts and also latently infected (LTBI) and uninfected household contacts. Results The gene expression level of BLR1, Bcl2, IL4d2, IL7R, FCGR1A, MARCO, MMP9, CCL19, and LTF had significant discriminatory power between sputum smear-positive TB cases and household contacts, with AUCs of 0.84, 0.81, 0.79, 0.79, 0.78, 0.76, 0.75, 0.75 and 0.68 respectively. The combination of Bcl2, BLR1, FCGR1A, IL4d2 and MARCO identified 91.66% of active TB cases and 95.65% of household contacts without active TB. The expression of CCL19, TGFB1, and Foxp3 showed significant difference between LTBI and uninfected contacts, with AUCs of 0.85, 0.82, and 0.75, respectively, whereas the combination of BPI, CCL19, FoxP3, FPR1 and TGFB1 identified 90.9% of QFT- and 91.6% of QFT+ household contacts. Conclusions Expression of single and especially combinations of host genes can accurately differentiate between active TB cases and healthy individuals as well as between LTBI and uninfected contacts.
- ItemImpact of HIV co-infection on plasma level of cytokines and chemokines of pulmonary tuberculosis patients(BioMed Central, 2014-03-04) Mihret, Adane; Abebe, Markos; Bekele, Yonas; Aseffa, Abraham; Walzl, Gerhard; Howe, RawleighBackground The immunologic environment during HIV/M. tuberculosis co-infection is characterized by cytokine and chemokine irregularities that have been shown to increase immune activation, viral replication, and T cell dysfunction. Methods We analysed ex vivo plasma samples from 17 HIV negative and 16 HIV pulmonary tuberculosis co infected cases using Luminex assay to see impact of HIV co-infection on plasma level of cytokines and chemokines of pulmonary tuberculosis patients before and after anti Tuberculosis treatment. Results The median plasma level of IFN-γ, IL-4, MCP-3, MIP-1β and IP-10 was significantly different (P < 0.05) before and after treatment in HIV negative TB patients but not in HIV positive TB patients. There was no significant difference between HIV positive and HIV negative TB patients (P > 0.05) in the plasma level of any of the cytokines or chemokines before treatment and anti TB treatment did not change the level of any of the measured cytokines in HIV positive tuberculosis patients. The ratio of IFN-γ/IL-10 and IFN-γ/IL-4 showed a significant increase after treatment in HIV negative TB cases but not in HIV positive TB cases which might indicate prolonged impairment of immune response to TB in HIV positive TB patients as compared to HIV negative tuberculosis patients. Conclusions HIV positive and HIV negative Tuberculosis patients display similar plasma cytokine and chemokine pattern. However, anti TB treatment significantly improves the Th1 cytokines and level of chemokines but does not restore the immune response in HIV positive individuals.