Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Browse the repository
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Hoffmann, McElory Roberto"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Stochastic visual tracking with active appearance models
    (Stellenbosch : University of Stellenbosch, 2009-12) Hoffmann, McElory Roberto; Herbst, B. M.; Hunter, K.; Van Zijl, L.; Du Preez, J.; University of Stellenbosch. Faculty of Engineering. Dept. of Mathematical Sciences. Applied Mathematics.
    ENGLISH ABSTRACT: In many applications, an accurate, robust and fast tracker is needed, for example in surveillance, gesture recognition, tracking lips for lip-reading and creating an augmented reality by embedding a tracked object in a virtual environment. In this dissertation we investigate the viability of a tracker that combines the accuracy of active appearancemodels with the robustness of the particle lter (a stochastic process)—we call this combination the PFAAM. In order to obtain a fast system, we suggest local optimisation as well as using active appearance models tted with non-linear approaches. Active appearance models use both contour (shape) and greyscale information to build a deformable template of an object. ey are typically accurate, but not necessarily robust, when tracking contours. A particle lter is a generalisation of the Kalman lter. In a tutorial style, we show how the particle lter is derived as a numerical approximation for the general state estimation problem. e algorithms are tested for accuracy, robustness and speed on a PC, in an embedded environment and by tracking in ìD. e algorithms run real-time on a PC and near real-time in our embedded environment. In both cases, good accuracy and robustness is achieved, even if the tracked object moves fast against a cluttered background, and for uncomplicated occlusions.

DSpace software copyright © 2002-2023 LYRASIS | Supported by Descry Technologies


  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback