Browsing by Author "Heyns, Eva Hutton"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- ItemChannelling metabolic flux away from ethanol production by modification of gene expression under wine fermentation conditions(Stellenbosch : Stellenbosch University, 2013-03) Heyns, Eva Hutton; Bauer, Florian; Setati, Mathabatha Evodia ; Rossouw, D.; Stellenbosch University. Faculty of AgriSciences. Dept. of Viticulture and Oenology. Institute for Wine Biotechnology.ENGLISH ABSTRACT: There is a global demand for technologies to reduce ethanol levels in wine without compromising wine quality. While several chemical and physical methods have been developed to reduce ethanol in finished wine, the target of an industrially applicable biological solution has thus far not been met. Most attempted biological strategies have focused on developing new strains of the main fermentative organism, the yeast Saccharomyces cerevisiae. Gene modification approaches have primarily focused on partially redirecting yeast carbon metabolism away from ethanol production towards glycerol production. These techniques have met with some moderate success, thus the focus of the current study was to re-direct carbon flux towards trehalose production by moderate over-expression of the TPS1 gene. This gene encodes trehalose-6-phosphate synthase, which converts glucose 6-phosphate and UDPglucose to α,α-trehalose 6-phosphate. Previous data have shown that the overproduction of trehalose restricts hexokinase activity reducing the amount of glucose that enters glycolysis. Nevertheless, preliminary TPS1 over-expression studies using multiple copy plasmids have shown some promise, but also indicated significant negative impact on the general fermentation behaviour of strains. In order to reduce such negative impacts of excessive trehalose production, a new strategy consisting in increasing the expression of TPS1 only during specific growth phases and by a relatively minor degree was investigated. Our study employed a lowcopy number episomal vector to drive moderate over-expression of the TPS1 gene in the widely used industrial strain VIN13 at different stages during fermentation. The fermentations were performed in synthetic must with sugar levels representative of those found in real grape must. This, as well as the use of an industrial yeast strain, makes it easier to relate our results to real winemaking conditions. A reduction in fermentation capacity was observed for all transformed strains and controls. Expression profiles suggest that the DUT1 promoter certainly results in increased TPS1 expression (up to 40%) during early exponential growth phase compared to the wild type strain (VIN13). TPS1 expression under the control of the GIP2 promoter region showed increased expression levels during early stationary phase (up to 60%). Chemical analysis of the yeast and the must at the end after fermentation showed an increase in trehalose production =in line with the expression data of TPS1. Importantly, glycerol production was also slightly increased, but without affecting acetic acid levels for the transformed strains. Although ethanol yield is not significantly lower in the DUT1-TPDS1 strain, s statistically significantly lower ethanol yield is observed for over-expression under the GIP2 promotor. Increasing trehalose production during stationary phase appears therefore to be a more promising approach at lowering ethanol yield and redirecting flux away from ethanol production. This controlled, growth phase specific over expression suggests a unique approach of lowering ethanol yield while not impacting on the redox balance.