Browsing by Author "Hattingh, Vaughan"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemCitrus black spot is absent in the Western Cape, Northern Cape and Free State Provinces(Academy of Science of South Africa, 2012) Carstens, Elma; Le Roux, Hendrik F.; Holtzhausen, Michael A.; Van Rooyen, Liezl; Coetzee, Joey; Wentzel, Ria; Laubscher, Wilhelm; Dawood, Zorina; Venter, Elrita; Schutte, Gerhardus C.; Hattingh, Vaughan; Fourie, Paul H.The South African citrus industry is strongly focused on exports and South Africa is a signatory member of both the World Trade Organisation Agreement on the application of Sanitary and Phytosanitary Measures and the International Plant Protection Convention. Citrus black spot, caused by Guignardia citricarpa, does not occur in all the South African citrus production areas and, therefore, South Africa has a responsibility to provide those trading partners that have identified G. citricarpa as a regulated pest with reliable information about the distribution of citrus black spot within South Africa. Detection surveys were conducted in citrus production areas in the Western Cape, Northern Cape and Free State Provinces and appropriate diagnostic protocols were used to ensure reliable detection of G. citricarpa. Trees in commercial orchards and home gardens on farms and in towns of 17, 9 and 5 magisterial districts in the Western Cape, Northern Cape and Free State Provinces, respectively, were sampled between 1995 and 2010. Fruit samples were taken during June and July, and leaf samples from November to January. None of the 3060 fruit and leaf samples collected during these surveys tested positive for G. citricarpa. Phyllosticta capitalensis, a non-pathogenic, ubiquitous, endophytic species was, however, detected during these surveys. In compliance with relevant International Standards for Phytosanitary Measures and based on the outcome of these official surveys, these three provinces in South Africa can be recognised as citrus black spot pest free areas.
- ItemThe effects of postharvest treatments and sunlight exposure on the reproductive capability and viability of Phyllosticta citricarpa in citrus black spot fruit lesions(MDPI, 2020-12-21) Moyo, Providence; Fourie, Paul H.; Masikane, Siyethemba L.; Fialho, Regis de Oliveira; Mamba, Lindokuhle C.; Du Plooy, Wilma; Hattingh, VaughanCitrus black spot (CBS) is caused by Phyllosticta citricarpa, which is classified as a quarantine organism in certain countries whose concerns are that CBS-infected fruit may be a pathway for introduction of the pathogen. This study evaluated the reproductive capability and viability of P. citricarpa under simulated conditions in which the whole fruit, peel segments, or citrus pulp with CBS lesions were discarded. Naturally infected ‘Midknight’ Valencia orange and ‘Eureka’ lemon fruit, either treated using standard postharvest sanitation, fungicide, and wax coating treatments or untreated, were placed into cold storage for 5 weeks (oranges at 4 ◦C and lemons at 7 ◦C). Thereafter, treated and untreated fruit were incubated for a further 2 weeks at conditions conducive for CBS symptom expression and formation of pycnidia. The ability of pycnidia to secrete viable pycnidiospores after whole fruit and peel segments or peel pieces from citrus pulp were exposed to sunlight at warm temperatures (±28 ◦C) and ±75% relative humidity levels was then investigated. The combination of postharvest treatments and cold storage effectively controlled CBS latent infections (>83.6% control) and pycnidium formation (<1.4% of lesions formed pycnidia), and the wax coating completely inhibited pycnidiospore release in fruit and peel segments. Pycnidiospores were secreted only from lesions on untreated fruit and peel segments and at low levels (4.3–8.6%) from peel pieces from pulped treated fruit. However, spore release rapidly declined when exposed to sunlight conditions (1.4% and 0% after 2 and 3 days, respectively). The generally poor reproductive ability and viability of CBS fruit lesions on harvested fruit, particularly when exposed to sunlight conditions, supports the conclusion that citrus fruit without leaves is not an epidemiologically significant pathway for the entry, establishment, and spread of P. citricarpa.