Browsing by Author "Haks, Marielle C."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemCombination of gene expression patterns in whole blood discriminate between tuberculosis infection states(BioMed Central, 2014-05) Mihret, Adane; Loxton, Andre G.; Bekele, Yonas; Kaufmann, Stefan H. E.; Kidd, Martin; Haks, Marielle C.; Ottenhoff, Tom H. M.; Aseffa, Abraham; Howe, Rawleigh; Walzl, GerhardBackground Genetic factors are involved in susceptibility or protection to tuberculosis (TB). Apart from gene polymorphisms and mutations, changes in levels of gene expression, induced by non-genetic factors, may also determine whether individuals progress to active TB. Methods We analysed the expression level of 45 genes in a total of 47 individuals (23 healthy household contacts and 24 new smear-positive pulmonary TB patients) in Addis Ababa using a dual colour multiplex ligation-dependent probe amplification (dcRT-MLPA) technique to assess gene expression profiles that may be used to distinguish TB cases and their contacts and also latently infected (LTBI) and uninfected household contacts. Results The gene expression level of BLR1, Bcl2, IL4d2, IL7R, FCGR1A, MARCO, MMP9, CCL19, and LTF had significant discriminatory power between sputum smear-positive TB cases and household contacts, with AUCs of 0.84, 0.81, 0.79, 0.79, 0.78, 0.76, 0.75, 0.75 and 0.68 respectively. The combination of Bcl2, BLR1, FCGR1A, IL4d2 and MARCO identified 91.66% of active TB cases and 95.65% of household contacts without active TB. The expression of CCL19, TGFB1, and Foxp3 showed significant difference between LTBI and uninfected contacts, with AUCs of 0.85, 0.82, and 0.75, respectively, whereas the combination of BPI, CCL19, FoxP3, FPR1 and TGFB1 identified 90.9% of QFT- and 91.6% of QFT+ household contacts. Conclusions Expression of single and especially combinations of host genes can accurately differentiate between active TB cases and healthy individuals as well as between LTBI and uninfected contacts.
- ItemCombining host-derived biomarkers with patient characteristics improves signature performance in predicting tuberculosis treatment outcomes(Springer Nature, 2020) Sivakumaran, Dhanasekaran; Jenum, Synne; Vaz, Mario; Selvam, Sumithra; Ottenhoff, Tom H. M.; Haks, Marielle C.; Malherbe, Stephanus T.; Doherty, Mark; Ritz, Christian; Grewal, Harleen M. S.Tuberculosis (TB) is a global health concern. Treatment is prolonged, and patients on anti-TB therapy (ATT) often experience treatment failure for various reasons. There is an urgent need to identify signatures for early detection of failure and initiation of a treatment switch.We investigated how gene biomarkers and/or basic patient characteristics could be used to define signatures for treatment outcomes in Indian adult pulmonary-TB patients treated with standard ATT. Using blood samples at baseline, a 12-gene signature combined with information on gender, previously-diagnosed TB, severe thinness, smoking and alcohol consumption was highly predictive of treatment failure at 6 months. Likewise a 4-protein biomarker signature combined with the same patient characteristics was almost as highly predictive of treatment failure. Combining biomarkers and basic patient characteristics may be useful for predicting and hence identification of treatment failure at an early stage of TB therapy.