Browsing by Author "Fly, Richard Derek"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- ItemApproaches for the study of leaf carbohydrate metabolic compartmentation in arabidopsis thaliana(Stellenbosch : University of Stellenbosch, 2010-12) Fly, Richard Derek; Lloyd, James Richard; Van der Merwe, M. J.; University of Stellenbosch. Faculty of Agrisciences. Dept. of Genetics. Institute for Plant Biotechnology (IPB).ENGLISH ABSTRACT: The study of plants on a sub-cellular level is an important, yet challenging area and its application allows for novel insight into the understanding of metabolism and its regulation. In this study I describe the development of a reverse phase liquid chromatography mass spectrometry (RPLC-MS) technique in which 29 phosphorylated and nucleotide sugars could be detected and quantified. The method was validated with the use of authentic standards and the system displayed very good linearity (Rª > 0.95), while the recovery of the standards added to the plant material before extraction was between 65 and 125%. Further, Arabidopsis thaliana wild type (Col-0) and adenylate kinase (adk1) mutant leaf discs were fed 13C labeled glucose over a period of 24 hours and harvested at defined time intervals. Non aqueous fractionation, and metabolite profiling via the above mentioned rpLC-MS method in conjunction with gas chromatography mass spectrometry (GC-MS) allowed for the detection and quantification of primary metabolites on a sub-cellular level as well as the determination of their relative isotopic label enrichments through primary carbon metabolism. Finally, a yeast complementation system was designed for the identification of tonoplast bound sucrose import proteins. The screening system identified 22 unique sequences from an Arabidopsis thaliana cDNA library. Four unknown sequences were identified, one of which displayed tonoplast membrane association upon in silico analysis. Three ATP-binding proteins were also identified as well as a sub-unit from the exocyst gene family. Further studies will include the functional characterization of the latter, as well as the development of additional cDNA libraries more suited for screening of sequences that encode sucrose importer proteins.