Browsing by Author "Essop, M. Faadiel"
Now showing 1 - 16 of 16
Results Per Page
Sort Options
- ItemAspalathin protects the heart against hyperglycemia-induced oxidative damage by up-regulating Nrf2 expression(MDPI, 2017) Dludla, Phiwayinkosi V.; Muller, Christo J. F.; Joubert, Elizabeth; Louw, Johan; Essop, M. Faadiel; Gabuza, Kwazi B.; Ghoor, Samira; Huisamen, Barbara; Johnson, RabiaAspalathin (ASP) can protect H9c2 cardiomyocytes against high glucose (HG)-induced shifts in myocardial substrate preference, oxidative stress, and apoptosis. The protective mechanism of ASP remains unknown. However, as one of possible, it is well known that phytochemical flavonoids reduce oxidative stress via nuclear factor (erythroid-derived 2)-like 2 (Nrf2) activation resulting in up-regulation of antioxidant genes and enzymes. Therefore, we hypothesized that ASP protects the myocardium against HG- and hyperglycemia-induced oxidative damage by up-regulating Nrf2 expression in H9c2 cardiomyocytes and diabetic (db/db) mice, respectively. Using an oxidative stress RT2 Profiler PCR array, ASP at a dose of 1 µM was demonstrated to protect H9c2 cardiomyocytes against HG-induced oxidative stress, but silencing of Nrf2 abolished this protective response of ASP and exacerbated cardiomyocyte apoptosis. Db/db mice and their non-diabetic (db/+) littermate controls were subsequently treated daily for six weeks with either a low (13 mg/kg) or high (130 mg/kg) ASP dose. Compared to nondiabetic mice the db/db mice presented increased cardiac remodeling and enlarged left ventricular wall that occurred concomitant to enhanced oxidative stress. Daily treatment of mice with ASP at a dose of 130 mg/kg for six weeks was more effective at reversing complications than both a low dose ASP or metformin, eliciting enhanced expression of Nrf2 and its downstream antioxidant genes. These results indicate that ASP maintains cellular homeostasis and protects the myocardium against hyperglycemia-induced oxidative stress through activation of Nrf2 and its downstream target genes.
- ItemCardiovascular risk and endothelial function in people living with HIV/AIDS: design of the multi-site, longitudinal EndoAfrica study in the Western Cape Province of South Africa(BioMed Central, 2017-01-07) Strijdom, Hans; De Boever, Patrick; Walzl, Gerhard; Essop, M. Faadiel; Nawrot, Tim S.; Webster, Ingrid; Westcott, Corli; Mashele, Nyiko; Everson, Frans; Malherbe, Stephanus T.; Stanley, Kim; Kessler, Harald H.; Stelzl, Evelyn; Goswami, NanduBackground: There is growing evidence of an interaction between HIV-infection, anti-retroviral therapy (ART) and cardiovascular diseases (CVD). Epidemiological studies in Europe and North America have been observing a shift towards an increased incidence of coronary heart disease and acute myocardial infarctions in HIV-infected populations compared to the general population even after adjusting for traditional cardiovascular risk factors. Despite South Africa (and sub-Saharan Africa, SSA) being regarded as the epicentre of the global HIV epidemic, very little is known about the prevalence of cardiovascular risk factors and precursors of vascular disease in HIV-infected populations in this region. The knowledge gap is further widened by the paucity of data from prospective studies. We present the rationale, objectives and key methodological features of the EndoAfrica study, which aims to determine whether HIVinfection and ART are associated with altered cardiovascular risk and changes in vascular endothelial structure and function in adults living in the Western Cape Province of South Africa. Methods: In this longitudinal study, comprehensive cardiovascular assessments of HIV-negative and HIV-positive (with and without ART) study participants are performed by clinical and biochemical screening for traditional cardiovascular risk factors and biomarkers of CVD. Vascular and endothelial function is determined by brachial artery flow-mediated dilatation (FMD), carotid-intima-thickness (IMT) measurements and quantitative retinal blood vessel analyses, complemented by vascular endothelial biomarker assays. Finally, we aim to statistically determine whether HIVinfection and/or ART are associated with increased cardiovascular risk and vascular endothelial dysfunction, and determine whether there is progression/regression in these endpoints 18 months after the baseline assessments. Discussion: The EndoAfrica study provides a unique opportunity to recruit a cohort of HIV-infected patients and HIVnegative controls who will be comprehensively and longitudinally assessed for cardiovascular risk and disease profile with vascular endothelial function as a potentially important intermediate cardiovascular phenotype. To our knowledge, it is the first time that such a systematic study has been established in the context of SSA and South Africa.
- ItemDistinct gender differences in anthropometric profiles of a peri-urban South African HIV population : a cross sectional study(BioMed Central, 2015-02) Nell, Theo A.; Kruger, Maritza J.; Beukes, Dillan C.; Calitz, Esme; Essop, Rehana; Essop, M. Faadiel; Physiological SciencesBackground: Highly active antiretroviral therapy (HAART) has extended life expectancy and enhanced the well-being of HIV-positive individuals. Since there are concerns regarding HAART-mediated onset of cardio-metabolic diseases in the long-term, we evaluated the anthropometric profile of black HIV-infected individuals in a peri-urban setting (Western Cape, South Africa). Methods: A cross sectional study design was followed to describe the gender differences in different HAART treatment groups. HIV-positive patients (n = 44 males, n = 102 females; 20–40 years) were recruited for three groups: 1) control (HIV-positive, HAART-naïve), 2) HIV-positive (<3 years HAART), and 3) HIV-positive (>3 years HAART). Results: All participants underwent comprehensive anthropometric and bio-electrical impedance analyses. No significant differences were observed in the male treatment groups. HAART-naïve females are mostly overweight (73.90 ± 2.79). This is followed by a period of muscle wasting seen in the triceps skinfold (29.30 ± 2.19 vs 20.63 ± 1.83; p < 0.01), muscle mass (22.23 ± 0.46 vs 19.82 ± 0.54; p < 0.01), and fat free mass (49.40 ± 1.08 vs 44.16 ± 1.21; p < 0.01) upon HAART initiation (<3 years HAART). Thereafter all parameters measured had levels similar to that seen for the female HAART-naïve group. Females on <3 years HAART exhibited significantly decreased body cell mass (p < 0.01), protein mass (p < 0.01), muscle mass (p < 0.01), fat free mass (p < 0.01), and fat mass (p < 0.001) versus matched HAART-naïve controls. The W:H ratio for the female treatment groups placed the females overall at a higher risk for developing cardiovascular disease compared to the males. Conclusions: This study found striking gender-based anthropometric differences in black South African HIV-positive individuals on HAART. We also conclude from this observational study that no significant differences were found in the different male treatment groups. All female body composition parameters initially showed lower values (<3 years HAART). The female treatment group (>3 years HAART) displayed values similar to that seen in the HAART-naïve group. Higher W:H ratios in females receiving longer-term HAART potentially increases their risk for the future onset of cardio-metabolic complications.
- ItemFall history and associated factors among adults living with HIV-1 in the Cape Winelands, South Africa : an exploratory investigation(Oxford University Press, 2019) Berner, Karina; Strijdom, Hans; Essop, M. Faadiel; Webster, Ingrid; Morris, Linzette; Louw, QuinetteBackground. People with HIV-1 (PWH) exhibit a high fall incidence and increased fracture risk. As little is known about fall frequency and associated factors in PWH residing in lower-middle-income countries (LMIC), we investigated fall frequency, bone quality, and factors associated with fall history in a South African cohort. Methods. Fifty PWH without obvious predisposing factors for mobility impairments attending 2 public primary care clinics in the Western Cape region participated. Demographic, clinical, and physical performance data were collected. Falls were assessed retrospectively over 12 months. Mobility and balance were evaluated using a physical performance battery. Bone mineral density was screened using quantitative ultrasound (QUS). Associations between variables and falls grouping were analyzed using chi-square tests, t tests, and Mann-Whitney U tests, and effect sizes (ES) were calculated. Results. Thirty-four percent of PWH (median age, 36.6 years) reported falling during the past year, and 41.2% of fallers reported multiple falls. Fallers had more mobility problems (P = .013), higher fear of falling (P = .007), higher fracture history (P = .003), worse balance performance (P < .001), higher proportions of detectable viral loads (P = .021), and poorer bone quality (P = .040). Differences were of medium to large ES. Conclusions. This exploratory study is the first to show that relatively young South African PWH without obvious predisposing factors for gait and balance impairments experience falls. The observed fall-associated factors warrant further research using larger samples and longitudinal designs to ascertain fall predictors within this population.
- ItemGender differences in metabolic risk factor prevalence in a South African student population(Clinics Cardiv Publishing, 2009-06) Smith, Carine; Essop, M. FaadielWe determined selected risk factors for the metabolic syndrome and assessed the metabolic risk status (using IDF criteria) of third-year physiology students at Stellenbosch University (88 males and 178 females). Outcome measures included anthropometry [body mass index (BMI), waist circumference, waist-to-hip ratio], blood pressure (BP), resting pulse rate, and fasting blood glucose, total cholesterol and triglyceride levels. In addition, students completed a lifestyle questionnaire. A number of gender-based differences were found, with male students displaying a greater incidence of risk factors for the metabolic syndrome: 6% of males versus 3% of females displayed a cluster of three risk factors. Twenty-five per cent of female students (but only 14% of males) exhibited waist circumferences above the accepted range, which was positively correlated, for males and females, with both systolic and diastolic BP, and in females only, also with total cholesterol levels. Male students on average exercised more than their female counterparts, but also exhibited poorer eating habits. Average blood triglyceride levels for both male and female students exceeded the accepted threshold (1.85 ± 1.62 mmol/l and 2.15 ± 1.79 mmol/l, respectively). We concluded that metabolic risk factors were evident in a much younger population than commonly expected. Moreover, the gender-specific differences observed may impact on future risk assessment and preventative measures adopted.
- ItemGlycation abolishes the cardioprotective effects of albumin during ex vivo ischemia-reperfusion(Wiley Open Access, 2017) Mapanga, Rudo F.; Joseph, Danzil E.; Saieva, Marco; Boyer, Florence; Rondeau, Philippe; Bourdon, Emmanuel; Essop, M. FaadielHyperglycemia‐induced oxidative stress plays a key role in the onset/progression of cardiovascular diseases. For example, it can trigger formation of advanced glycation end (AGE) products with ischemia‐reperfusion performed under hyperglycemic conditions. For this study, we hypothesized that albumin modified by glycation loses its unique cardioprotective properties in the setting of ischemia‐reperfusion under high glucose conditions. Here, ex vivo rat heart perfusions were performed under simulated normo‐ and hyperglycemic conditions, that is Krebs‐Henseleit buffer containing 11 mmol/L and 33 mmol/L glucose, respectively, ± normal or glycated albumin preparations. The perfusion protocol consisted of a 60 min stabilization step that was followed by 20 min of global ischemia and 60 min reperfusion. Additional experiments were completed to determine infarct sizes in response to 20 min regional ischemia and 120 min reperfusion. At the end of perfusions, heart tissues were isolated and evaluated for activation of the AGE pathway, oxidative stress, and apoptosis. Our data reveal that native bovine serum albumin treatment elicited cardioprotection (improved functional recovery, decreased infarct sizes) under high glucose conditions together with enhanced myocardial antioxidant capacity. However, such protective features are lost with glycation where hearts displayed increased infarct sizes and poor functional recovery versus native albumin treatments. Myocardial antioxidant capacity was also lowered together with activation of the intracellular AGE pathway. These data therefore show that although albumin acts as a cardioprotective agent during ischemia‐reperfusion, it loses its cardioprotective and antioxidant properties when modified by glycation.
- ItemThe impact of sugar-sweetened beverage consumption on the liver : a proteomics-based analysis(MDPI, 2020) Benade, Janina; Sher, Lucien; De Klerk, Sheneez; Deshpande, Gaurang; Bester, Dirk; Marnewick, Jeanine L.; Sieck, Gary; Laher, Ismail; Essop, M. FaadielCardiometabolic complications such as the metabolic syndrome and Type 2 Diabetes Mellitus (T2DM) are major causes of global morbidity and mortality. As sugar-sweetened beverages (SSBs) are implicated in this process, this study aimed to obtain greater mechanistic insights. Male Wistar rats (~200 g) were gavaged with a local SSB every day for a period of six months while the control group was gavaged with an iso-volumetric amount of water. Experimental dosages were calculated according to the surface area-to-volume ratio and were equivalent to 125 mL/day (in human terms). A proteomic analysis was performed on isolated liver samples and thereafter, markers of endoplasmic reticulum (ER) stress, antioxidant/oxidant capacity, calcium regulation, and mitochondrial functionality were assessed. These data show that SSB consumption resulted in (a) the induction of mild hepatic ER stress; (b) altered hepatic mitochondrial dynamics; and (c) perturbed calcium handling across mitochondria-associated ER membranes. Despite significant changes in markers of ER stress, the antioxidant response and calcium handling (proteomics data), the liver is able to initiate adaptive responses to counteract such stressors. However, the mitochondrial data showed increased fission and decreased fusion that may put the organism at risk for developing insulin resistance and T2DM in the longer term.
- ItemThe impact of sugar-sweetened beverage intake on rat cardiac function(Elsevier, 2019-03-12) Driescher, Natasha; Joseph, Danzil E.; Human, Veronique R.; Ojuka, Edward; Cour, Martin; Hadebe, Nkanyiso; Bester, Dirk; Marnewick, Jeanine L.; Lecour, Sandrine; Lochner, Amanda; Essop, M. FaadielAims: Although there is evidence linking sugar-sweetened beverage (SSB) intake with the development of cardio-metabolic diseases, the underlying mechanisms remain unclear. The current study therefore evaluated the effects of SSB consumption by establishing a unique in-house in vivo experimental model. Main methods: Male Wistar rats were divided into two groups: a) one consuming a popular local SSB (SSB- Jive), and b) a control group (Control-water) for a period of three and six months (n = 6 per group), respectively. Rats were gavaged on a daily basis with an experimental dosage amounting to half a glass per day (in human terms) (SSB vs. water). Cardiac function was assessed at baseline (echocardiography) and following ex vivo ischemia-reperfusion of the isolated perfused working rat heart. Oral glucose tolerance tests and mitochondrial respiratory analyses were also performed. In addition, the role of non-oxidative glucose pathways (NOGPs), i.e. the polyol pathway, hexosamine biosynthetic pathway (HBP) and PKC were assessed. Key findings: These data show that SSB intake: a) resulted in increased weight gain, but did not elicit major effects in terms of insulin resistance and cardiac function after three and six months, respectively; b) triggered myocardial NOGP activation after three months with a reversion after six months; and c) resulted in some impairment in mitochondrial respiratory capacity in response to fatty acid substrate supply after six months. Significance: SSB intake did not result in cardiac dysfunction or insulin resistance. However, early changes at the molecular level may increase risk in the longer term.
- ItemMuRF2 regulates PPARγ1 activity to protect against diabetic cardiomyopathy and enhance weight gain induced by a high fat diet(BioMed Central, 2015) He, Jun; Quintana, Megan T.; Sullivan, Jenyth; Parry, Traci L .; Grevengoed, Trisha J.; Schisler, Jonathan C.; Hill, Joseph A.; Yates, Cecelia C.; Mapanga, Rudo F.; Essop, M. Faadiel; Stansfield, William E.; Bain, James R.; Newgard, Christopher B.; Muehlbauer, Michael J.; Han, Yipin; Clarke, Brian A.; Willis, Monte S.Background: In diabetes mellitus the morbidity and mortality of cardiovascular disease is increased and represents an important independent mechanism by which heart disease is exacerbated. The pathogenesis of diabetic cardiomyopathy involves the enhanced activation of PPAR transcription factors, including PPARα, and to a lesser degree PPARβ and PPARγ1. How these transcription factors are regulated in the heart is largely unknown. Recent studies have described post-translational ubiquitination of PPARs as ways in which PPAR activity is inhibited in cancer. However, specific mechanisms in the heart have not previously been described. Recent studies have implicated the musclespecific ubiquitin ligase muscle ring finger-2 (MuRF2) in inhibiting the nuclear transcription factor SRF. Initial studies of MuRF2−/− hearts revealed enhanced PPAR activity, leading to the hypothesis that MuRF2 regulates PPAR activity by post-translational ubiquitination. Methods: MuRF2−/− mice were challenged with a 26-week 60% fat diet designed to simulate obesity-mediated insulin resistance and diabetic cardiomyopathy. Mice were followed by conscious echocardiography, blood glucose, tissue triglyceride, glycogen levels, immunoblot analysis of intracellular signaling, heart and skeletal muscle morphometrics, and PPARα, PPARβ, and PPARγ1-regulated mRNA expression. Results: MuRF2 protein levels increase ~20% during the development of diabetic cardiomyopathy induced by high fat diet. Compared to littermate wildtype hearts, MuRF2−/− hearts exhibit an exaggerated diabetic cardiomyopathy, characterized by an early onset systolic dysfunction, larger left ventricular mass, and higher heart weight. MuRF2−/− hearts had significantly increased PPARα- and PPARγ1-regulated gene expression by RT-qPCR, consistent with MuRF2’s regulation of these transcription factors in vivo. Mechanistically, MuRF2 mono-ubiquitinated PPARα and PPARγ1 in vitro, consistent with its non-degradatory role in diabetic cardiomyopathy. However, increasing MuRF2:PPARγ1 (>5:1) beyond physiological levels drove poly-ubiquitin-mediated degradation of PPARγ1 in vitro, indicating large MuRF2 increases may lead to PPAR degradation if found in other disease states. Conclusions: Mutations in MuRF2 have been described to contribute to the severity of familial hypertrophic cardiomyopathy. The present study suggests that the lack of MuRF2, as found in these patients, can result in an exaggerated diabetic cardiomyopathy. These studies also identify MuRF2 as the first ubiquitin ligase to regulate cardiac PPARα and PPARγ1 activities in vivo via post-translational modification without degradation.
- ItemMuscle ring finger-3 protects against diabetic cardiomyopathy induced by a high fat diet(BioMed Central, 2015-07) Quintana, Megan T.; He, Jun; Sullivan, Jenyth; Grevengoed, Trisha; Schisler, Jonathan; Han, Yipin; Hill, Joseph A.; Yates, Cecelia C.; Stansfield, William E.; Mapanga, Rudo F.; Essop, M. Faadiel; Muehlbauer, Michael J.; Newgard, Christopher B.; Bain, James R.; Willis, Monte S.Background: The pathogenesis of diabetic cardiomyopathy (DCM) involves the enhanced activation of peroxisome proliferator activating receptor (PPAR) transcription factors, including the most prominent isoform in the heart, PPARα. In cancer cells and adipocytes, post-translational modification of PPARs have been identified, including ligand-dependent degradation of PPARs by specific ubiquitin ligases. However, the regulation of PPARs in cardiomyocytes and heart have not previously been identified. We recently identified that muscle ring finger-1 (MuRF1) and MuRF2 differentially inhibit PPAR activities by mono-ubiquitination, leading to the hypothesis that MuRF3 may regulate PPAR activity in vivo to regulate DCM. Methods: MuRF3−/− mice were challenged with 26 weeks 60 % high fat diet to induce insulin resistance and DCM. Conscious echocardiography, blood glucose, tissue triglyceride, glycogen levels, immunoblot analysis of intracellular signaling, heart and skeletal muscle morphometrics, and PPARα, PPARβ, and PPARγ1 activities were assayed. Results: MuRF3−/− mice exhibited a premature systolic heart failure by 6 weeks high fat diet (vs. 12 weeks in MuRF3+/+). MuRF3−/− mice weighed significantly less than sibling-matched wildtype mice after 26 weeks HFD. These differences may be largely due to resistance to fat accumulation, as MRI analysis revealed MuRF3−/− mice had significantly less fat mass, but not lean body mass. In vitro ubiquitination assays identified MuRF3 mono-ubiquitinated PPARα and PPARγ1, but not PPARβ. Conclusions: These findings suggest that MuRF3 helps stabilize cardiac PPARα and PPARγ1 in vivo to support resistance to the development of DCM. MuRF3 also plays an unexpected role in regulating fat storage despite being found only in striated muscle.
- ItemOleanolic acid : a novel cardioprotective agent that blunts hyperglycemia-induced contractile dysfunction(Public Library of Science, 2012-10-16) Mapanga, Rudo F.; Rajamani, Uthra; Dlamini, Nonkululeko; Zungu-Edmondson, Makhosazane; Kelly-Laubscher, Roison; Shafiullah, Mohammed; Wahab, Athiq; Hasan, Mohamed Y.; Fahim, Mohamed A.; Rondeau, Phillipe; Bourdon, Emmanuel; Essop, M. FaadielDiabetes constitutes a major health challenge. Since cardiovascular complications are common in diabetic patients this will further increase the overall burden of disease. Furthermore, stress-induced hyperglycemia in non-diabetic patients with acute myocardial infarction is associated with higher in-hospital mortality. Previous studies implicate oxidative stress, excessive flux through the hexosamine biosynthetic pathway (HBP) and a dysfunctional ubiquitin-proteasome system (UPS) as potential mediators of this process. Since oleanolic acid (OA; a clove extract) possesses antioxidant properties, we hypothesized that it attenuates acute and chronic hyperglycemia-mediated pathophysiologic molecular events (oxidative stress, apoptosis, HBP, UPS) and thereby improves contractile function in response to ischemia-reperfusion. We employed several experimental systems: 1) H9c2 cardiac myoblasts were exposed to 33 mM glucose for 48 hr vs. controls (5 mM glucose); and subsequently treated with two OA doses (20 and 50 mM) for 6 and 24 hr, respectively; 2) Isolated rat hearts were perfused ex vivo with Krebs-Henseleit buffer containing 33 mM glucose vs. controls (11 mM glucose) for 60 min, followed by 20 min global ischemia and 60 min reperfusion 6 OA treatment; 3) In vivo coronary ligations were performed on streptozotocin treated rats 6 OA administration during reperfusion; and 4) Effects of long-term OA treatment (2 weeks) on heart function was assessed in streptozotocin-treated rats. Our data demonstrate that OA treatment blunted high glucose-induced oxidative stress and apoptosis in heart cells. OA therapy also resulted in cardioprotection, i.e. for ex vivo and in vivo rat hearts exposed to ischemia-reperfusion under hyperglycemic conditions. In parallel, we found decreased oxidative stress, apoptosis, HBP flux and proteasomal activity following ischemia-reperfusion. Long-term OA treatment also improved heart function in streptozotocin-diabetic rats. These findings are promising since it may eventually result in novel therapeutic interventions to treat acute hyperglycemia (in non-diabetic patients) and diabetic patients with associatedcardiovascular complications.
- ItemOxidatives stress and adipocyte biology : focus on therole of AGEs(Hindawi, 2015-03) Boyer, Florence; Vidot, Jennifer Baraka; Dubourg, Alexis Guerin; Rondeau, Philippe; Essop, M. Faadiel; Bourdon, EmmanuelDiabetes is a major health problem that is usually associated with obesity, together with hyperglycemia and increased advanced glycation endproducts (AGEs) formation. Elevated AGEs elicit severe downstream consequences via their binding to receptors of AGEs (RAGE). This includes oxidative stress and oxidative modifications of biological compounds together with heightened inflammation. For example, albumin (major circulating protein) undergoes increased glycoxidation with diabetes and may represent an important biomarker for monitoring diabetic pathophysiology. Despite the central role of adipose tissue in many physiologic/pathologic processes, recognition of the effects of greater AGEs formation in this tissue is quite recent within the obesity/diabetes context. This review provides a brief background of AGEs formation and adipose tissue biology and thereafter discusses the impact of AGEs-adipocyte interactions in pathology progression. Novel data are included showing how AGEs (especially glycated albumin) may be involved in hyperglycemia-induced oxidative damage in adipocytes and its potential links to diabetes progression.
- ItemPartial inhibition of the ubiquitin– proteasome system ameliorates cardiac dysfunction following ischemia–reperfusion in the presence of high glucose(Springer Verlag, 2015) Adams, Buin; Mapanga, Rudo F.; Essop, M. Faadiel; Physiological SciencesAbstract Background: Acute hyperglycemia co-presenting with myocardial infarction (in diabetic and non-diabetic individuals) is often associated with a poor prognosis. Although acute hyperglycemia induces oxidative stress that can lead to dysregulation of the ubiquitin–proteasome system (UPS), it is unclear whether increased/decreased UPS is detrimental with ischemia–reperfusion under such conditions. As our earlier data implicated the UPS in cardiac damage, we hypothesized that its inhibition results in cardioprotection with ischemia–reperfusion performed under conditions that simulate acute hyperglycemia. Methods: Ex vivo rat heart perfusions were performed with Krebs–Henseleit buffer containing 33 mM glucose vs. controls (11 mM glucose) for 60 min stabilization, followed by 20 min global ischemia and 60 min reperfusion ± 5 µM lactacystin and 10 µM MG-132, respectively. The UPS inhibitors were added during the first 20 min of the reperfusion phase and various cardiac functional parameters evaluated. In parallel experiments, infarct sizes were assessed following 20 min regional ischemia and 120 min reperfusion ± each of the respective UPS inhibitors (added during reperfusion). Heart tissues were collected and analyzed for markers of oxidative stress, UPS activation, inflammation and autophagy. Results: The proteasome inhibitor doses and treatment duration here employed resulted in partial UPS inhibition during the reperfusion phase. Both lactacystin and MG-132 administration resulted in cardioprotection in our experimental system, with MG-132 showing a greater effect. The proteasome inhibitors also enhanced cardiac superoxide dismutase protein levels (SOD1, SOD2), attenuated pro-inflammatory effects and caused an upregulation of autophagic markers. Conclusions: This study established that partial proteasome inhibition elicits cardioprotection in hearts exposed to ischemia–reperfusion with acute simulated hyperglycemia. These data reveal that protease inhibition triggered three major protective effects, i.e. (a) enhancing myocardial anti-oxidant defenses, (b) attenuating inflammation, and (c) increasing the autophagic response. Thus the UPS emerges as a unique therapeutic target for the treatment of ischemic heart disease under such conditions. Keywords: Ubiquitin–proteasome system, Ischemia–reperfusion, Cardiac dysfunction, Hyperglycemia, Inflammation, Oxidative stress, Autophagy
- ItemResveratrol co-treatment attenuates the effects of HIV protease inhibitors on rat body weight and enhances cardiac mitochondrial respiration(Public Library of Science, 2017-01-20) Symington, Burger; Mapanga, Rudo F.; Norton, Gavin R.; Essop, M. FaadielSince the early 1990s human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome (AIDS) emerged as a global health pandemic, with sub-Saharan Africa the hardest hit. While the successful roll-out of antiretroviral (ARV) therapy provided significant relief to HIV-positive individuals, such treatment can also elicit damaging side-effects. Here especially HIV protease inhibitors (PIs) are implicated in the onset of cardio-metabolic complications such as type-2 diabetes and coronary heart disease. As there is a paucity of data regarding suitable co-treatments within this context, this preclinical study investigated whether resveratrol (RSV), aspirin (ASP) or vitamin C (VitC) co-treatment is able to blunt side-effects in a rat model of chronic PI exposure (Lopinavir/Ritonavir treatment for 4 months). Body weights and weight gain, blood metabolite levels (total cholesterol, HDL, LDL, triglycerides), echocardiography and cardiac mitochondrial respiration were assessed in PI-treated rats ± various co-treatments. Our data reveal that PI treatment significantly lowered body weight and cardiac respiratory function while no significant changes were found for heart function and blood metabolite levels. Moreover, all co-treatments ameliorated the PI-induced decrease in body weight after 4 months of PI treatment, while RSV co-treatment enhanced cardiac mitochondrial respiratory capacity in PI-treated rats. This pilot study therefore provides novel hypotheses regarding RSV co-treatment that should be further assessed in greater detail.
- ItemThe transcription profile unveils the cardioprotective effect of aspalathin against lipid toxicity in an in Vitro H9c2 model(MDPI, 2017) Johnson, Rabia; Dludla, Phiwayinkosi V.; Muller, Christo J. F.; Huisamen, Barbara; Essop, M. Faadiel; Louw, JohanAspalathin, a C-glucosyl dihydrochalcone, has previously been shown to protect cardiomyocytes against hyperglycemia-induced shifts in substrate preference and subsequent apoptosis. However, the precise gene regulatory network remains to be elucidated. To unravel the mechanism and provide insight into this supposition, the direct effect of aspalathin in an isolated cell-based system, without the influence of any variables, was tested using an H9c2 cardiomyocyte model. Cardiomyocytes were exposed to high glucose (33 mM) for 48 h before post-treatment with or without aspalathin. Thereafter, RNA was extracted and RT2 PCR Profiler Arrays were used to profile the expression of 336 genes. Results showed that, 57 genes were differentially regulated in the high glucose or high glucose and aspalathin treated groups. Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) analysis revealed lipid metabolism and molecular transport as the biological processes altered after high glucose treatment, followed by inflammation and apoptosis. Aspalathin was able to modulate key regulators associated with lipid metabolism (Adipoq, Apob, CD36, Cpt1, Pparγ, Srebf1/2, Scd1 and Vldlr), insulin resistance (Igf1, Akt1, Pde3 and Map2k1), inflammation (Il3, Il6, Jak2, Lepr, Socs3, and Tnf13) and apoptosis (Bcl2 and Chuk). Collectively, our results suggest that aspalathin could reverse metabolic abnormalities by activating Adipoq while modulating the expression of Pparγ and Srebf1/2, decreasing inflammation via Il6/Jak2 pathway, which together with an observed increased expression of Bcl2 prevents myocardium apoptosis.
- ItemTrimetazidine therapy for diabetic mouse hearts subjected to ex vivo acute heart failure(Public Library of Science, 2017-06-20) Breedt, Emilene; Lacerda, Lydia; Essop, M. FaadielAcute heart failure (AHF) is the most common primary diagnosis for hospitalized heart diseases in Africa. As increased fatty acid β-oxidation (FAO) during heart failure triggers detrimental effects on the myocardium, we hypothesized that trimetazidine (TMZ) (partial FAO inhibitor) offers cardioprotection under normal and obese-related diabetic conditions. Hearts were isolated from 12-14-week-old obese male and female diabetic (db/db) mice versus lean non-diabetic littermates (db/+) controls. The Langendorff retrograde isolated heart perfusion system was employed to establish an ex vivo AHF model: a) Stabilization phase—Krebs Henseleit buffer (10 mM glucose) at 100 mmHg (25 min); b) Critical Acute Heart Failure (CAHF) phase–(1.2 mM palmitic acid, 2.5 mM glucose) at 20 mmHg (25 min); and c) Recovery Acute Heart Failure phase (RAHF)–(1.2 mM palmitic acid, 10 mM glucose) at 100 mmHg (25 min). Treated groups received 5 μM TMZ in the perfusate during either the CAHF or RAHF stage for the full duration of each respective phase. Both lean and obese males benefited from TMZ treatment administered during the RAHF phase. Sex differences were observed only in lean groups where the phases of the estrous cycle influenced therapy; only the lean follicular female group responded to TMZ treatment during the CAHF phase. Lean luteal females rather displayed an inherent cardioprotection (without treatments) that was lost with obesity. However, TMZ treatment initiated during RAHF was beneficial for obese luteal females. TMZ treatment triggered significant recovery for male and obese female hearts when administered during RAHF. There were no differences between lean and obese male hearts, while lean females displayed a functional recovery advantage over lean males. Thus TMZ emerges as a worthy therapeutic target to consider for AHF treatment in normal and obese-diabetic individuals (for both sexes), but only when administered during the recovery phase and not during the very acute stages.