Browsing by Author "Engelbrecht, Lize"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- ItemCorrelative Light-Electron Microscopy detects lipopolysaccharide and its association with fibrin fibres in Parkinson’s Disease, Alzheimer’s Disease and Type 2 Diabetes Mellitus(Nature Research, 2018-11-14) De Waal, Greta M.; Engelbrecht, Lize; Davis, Tanja Andrea; De Villiers, Willem J. S.; Kell, Douglas B.; Pretorius, EtheresiaMany chronic diseases, including those classified as cardiovascular, neurodegenerative, or autoimmune, are characterized by persistent inflammation. The origin of this inflammation is mostly unclear, but it is typically mediated by inflammatory biomarkers, such as cytokines, and affected by both environmental and genetic factors. Recently circulating bacterial inflammagens such as lipopolysaccharide (LPS) have been implicated. We used a highly selective mouse monoclonal antibody to detect bacterial LPS in whole blood and/or platelet poor plasma of individuals with Parkinson’s Disease, Alzheimer’s type dementia, or Type 2 Diabetes Mellitus. Our results showed that staining is significantly enhanced (P < 0.0001) compared to healthy controls. Aberrant blood clots in these patient groups are characterized by amyloid formation as shown by the amyloid-selective stains thioflavin T and Amytracker™ 480 or 680. Correlative Light-Electron Microscopy (CLEM) illustrated that the LPS antibody staining is located in the same places as where amyloid fibrils may be observed. These data are consistent with the Iron Dysregulation and Dormant Microbes (IDDM) hypothesis in which bacterial inflammagens such as LPS are responsible for anomalous blood clotting as part of the aetiology of these chronic inflammatory diseases.
- ItemGrape seed extract affects adhesion competence and maturation of primary isolated rat myoblasts after contusion injury(Stellenbosch : Stellenbosch University, 2013-03) Engelbrecht, Lize; Myburgh, Kathryn H.; Niesler, Carola; Stellenbosch University. Faculty of Science. Dept. of Physiological Sciences.ENGLISH ABSTRACT: Contusion injuries cause significant muscle damage, activating a series of cellular events. Satellite cells (SC), the key role players in muscle regeneration, are activated to proliferate and develop into mature myoblasts, which could fuse to form new myotubes or to repair damaged fibres. Evidence suggests that anti-oxidants, such as those found in grape seed extract (GSE), enhance repair, but their effect on SCs is still unclear. This study aimed to harvest and culture primary rat myoblasts to investigate the effect of chronic in vivo GSE supplementation on SCs following a standardised crush injury. Using a modified pre-plate technique, myoblasts were harvested from rat muscle and then compared with the immortal C2C12 cell line for proliferation and differentiation competence. Several media options were compared: i) DMEM with or without L-glutamine, ii) Ham‘s F10 or iii) DMEM with L-glutamine and Ham‘s F10 combined. Primary myoblasts proliferated and differentiated at a much slower rate than C2C12 cells. The combined media was selected for further use. To investigate the effects of GSE on the recovery, rats were supplemented daily with GSE or placebo 14 days prior to a standardised mass-drop crush injury to the gastrocnemius. SCs were isolated and cultured from uninjured (NI, baseline) and from injured rats 4 hours (4h), 3 days (3d) or 14 days (14d) post-injury. Expression of myogenic proteins Pax7, M-cadherin, MyoD, CD56, desmin and CD34 was determined by flow cytometry. Myoblasts were sorted according to their CD56 and CD34 expression and three sub-sets were collected and re-cultured, namely CD56+/CD34-, CD56-/CD34+ and CD56+/CD34+. After 24 hours, sorted cells were stained for desmin expression. Pax7, M-cadherin and MyoD were present in 100% of isolated cells from all groups confirming their myogenic SC identity. For all groups, desmin was expressed only in ~80% of SCs. Lower adhesion competency in GSE supplemented groups resulted in lower yield obtained for culturing. Expression of CD56 increased significantly 3d post-injury in the placebo group. In contrast, with GSE, CD56 already increased 4h post-injury and decreased again 3d post-injury. Although CD34 expression did not differ dramatically, expression pattern resembled that of CD56. Immunocytochemistry revealed a range in morphology and desmin expression of sorted myoblasts. More myoblasts with high desmin expression were observed in the two CD56+ sub-sets (irrespective of CD34 expression), indicating that CD56 is still expressed in more mature myoblasts. Flow cytometry revealed a population of myoblasts expressing particularly high levels of desmin, primarily in the non-injured baseline GSE group. We hypothesise that this result is an indication of preparedness of myoblasts to respond earlier to injury, enabling quicker repair. This cell population with high desmin content is restored in skeletal muscle after repair (14d), only when supplemented with GSE. In conclusion, GSE attenuated adhesion competence of primary myoblasts in culture, but resulted in earlier maturation of SCs, possibly due to baseline preparedness of myoblasts in uninjured muscle for a quick response. Both reduced adhesion competence and early progression of myoblasts could enhance wound healing in skeletal muscle.
- ItemSerum amyloid A binds to fibrin(ogen), promoting fibrin amyloid formation(Nature Research (part of Springer Nature), 2019-02-28) Page, Martin J.; Thomson, Greig J. A.; Nunes, J. Massimo; Engelbrecht, Anna-Mart; Nell, Theo A.; De Villiers, Willem J. S.; De Beer, Maria C.; Engelbrecht, Lize; Kell, Douglas B.; Pretorius, EtheresiaComplex associations exist between inflammation and thrombosis, with the inflammatory state tending to promote coagulation. Fibrinogen, an acute phase protein, has been shown to interact with the amyloidogenic ß-amyloid protein of Alzheimer’s disease. However, little is known about the association between fibrinogen and serum amyloid A (SAA), a highly fibrillogenic protein that is one of the most dramatically changing acute phase reactants in the circulation. To study the role of SAA in coagulation and thrombosis, in vitro experiments were performed where purified human SAA, in concentrations resembling a modest acute phase response, was added to platelet-poor plasma (PPP) and whole blood (WB), as well as purified and fluorescently labelled fibrinogen. Results from thromboelastography (TEG) suggest that SAA causes atypical coagulation with a fibrin(ogen)-mediated increase in coagulation, but a decreased platelet/fibrin(ogen) interaction. In WB scanning electron microscopy analysis, SAA mediated red blood cell (RBC) agglutination, platelet activation and clumping, but not platelet spreading. Following clot formation in PPP, the presence of SAA increased amyloid formation of fibrin(ogen) as determined both with auto-fluorescence and with fluorogenic amyloid markers, under confocal microcopy. SAA also binds to fibrinogen, as determined with a fluorescent-labelled SAA antibody and correlative light electron microscopy (CLEM). The data presented here indicate that SAA can affect coagulation by inducing amyloid formation in fibrin(ogen), as well as by propelling platelets to a more prothrombotic state. The discovery of these multiple and complex effects of SAA on coagulation invite further mechanistic analyses.
- ItemSubstantial fibrin amyloidogenesis in type 2 diabetes assessed using amyloid-selective fluorescent stains(Biomed Central, 2017) Pretorius, Etheresia; Page, Martin J.; Engelbrecht, Lize; Ellis, Graham C.; Kell, Douglas B.Background: We have previously shown that many chronic, inflammatory diseases are accompanied, and possibly partly caused or exacerbated, by various coagulopathies, manifested as anomalous clots in the form of ‘dense matted deposits’. More recently, we have shown that these clots can be amyloid in nature, and that the plasma of healthy controls can be induced to form such clots by the addition of tiny amounts of bacterial lipopolysaccharide or lipoteichoic acid. Type 2 diabetes (T2D) is also accompanied by raised levels of LPS. Methods: We use superresolution and confocal microscopies to investigate the amyloid nature of clots from healthy and T2D individuals. Results: We show here, with the established stain thioflavin T and the novel stains Amytracker™ 480 and 680, that the clotting of plasma from type 2 diabetics is also amyloid in nature, and that this may be prevented by the addition of suitable concentrations of LPS-binding protein. Conclusion; This implies strongly that there is indeed a microbial component to the development of type 2 diabetes, and suggests that LBP might be used as treatment for it and its sequelae.