Browsing by Author "Eksteen, Lambertus Lochner"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- ItemReducing height and lodging in canola (Brassica napus L.) using plant growth regulators(Stellenbosch : Stellenbosch University, 2014-12) Eksteen, Lambertus Lochner; Agenbag, G. A.; Stellenbosch University. Faculty of AgriSciences. Dept. of Agronomy.ENGLISH ABSTRACT: In South Africa, canola (Brassica napus L.) is produced under short day conditions during winter months. These conditions, together with high fertiliser application levels required to maximize grain yields, often result in tall growing bulky crops which are prone to lodging. This will especially be true if canola production is expanded to irrigated areas. Plant growth regulators (PGRs) have successfully been used to reduce canola plant height and lodging under experimental conditions in Australia and are worldwide commercially used to reduce plant height and lodging in winter cereals such as wheat and barley. The primary objective of this study was to determine the effect of anti-lodging PGRs on the agronomic and quality characteristics of commercial canola cultivars under South African conditions. This study was conducted under field conditions at three research farms, as well as controlled glasshouse conditions at Welgevallen Research Farm, situated in the Western Cape Province of South Africa. Foliar treatments consisted of a control (untreated) and four PGRs; CeCeCe® 750 (chlormequat chloride), Moddus® 250 EC (trinexapac-ethyl), Primo MAXX® (trinexapac-ethyl), and Kelpak®, applied either individually or in combination with wetting agent at budding stage (growth stage 3.1) of canola. Whilst glasshouse trials were conducted with spring canola cultivars “Hyola 555TT” and “43C80”, field trials were done with Hyola 555TT only. Monitoring and measuring various plant parameters during different growth stages of canola, the morphological and physiological impact of PGR-treatments on growth and development were determined. Though Primo MAXX® tends to reduce plant height in all trials; reductions were only significant during one of the glasshouse trials. Fortunately, compared to the control, none of the PGRs significantly reduced the leaf area, number of flowers or number of pods plant-1 during this study, while Primo MAXX® and Moddus® 250 EC tend to increase the grain yield under field conditions. This study indicates that PGRs can possibly be used to improve lodging resistance and yield of canola. Identifying the most effective PGRs on specific cultivars, the results of the study will contribute to the knowledge of using PGRs in canola to reduce lodging and improve grain yields in South Africa.