Browsing by Author "Eaton, Jeffrey W."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- ItemCost-per-diagnosis as a metric for monitoring cost-effectiveness of HIV testing programmes in low-income settings in southern Africa : health economic and modelling analysis(International AIDS Society, 2019) Phillips, Andrew N.; Cambiano, Valentina; Nakagawa, Fumiyo; Bansi-Matharu, Loveleen; Wilson, David; Jani, Ilesh; Apollo, Tsitsi; Sculpher, Mark; Hallett, Timothy; Kerr, Cliff; Van Oosterhout, J.; Eaton, Jeffrey W.; Estill, Janne; Williams, Brian; Doi, Naoko; Cowan, Frances; Keiser, Olivia; Ford, Deborah; Hatzold, Karin; Barnabas, Ruanne; Ayles, Helen; Meyer-Rath, Gesine; Nelson, Lisa; Johnson, Cheryl; Baggaley, Rachel; Fakoya, Ade; Jahn, Andreas; Revill, PaulIntroduction: As prevalence of undiagnosed HIV declines, it is unclear whether testing programmes will be cost-effective. To guide their HIV testing programmes, countries require appropriate metrics that can be measured. The cost-per-diagnosis is potentially a useful metric. Methods: We simulated a series of setting-scenarios for adult HIV epidemics and ART programmes typical of settings in southern Africa using an individual-based model and projected forward from 2018 under two policies: (i) a minimum package of “core” testing (i.e. testing in pregnant women, for diagnosis of symptoms, in sex workers, and in men coming forward for circumcision) is conducted, and (ii) core-testing as above plus additional testing beyond this (“additionaltesting”), for which we specify different rates of testing and various degrees to which those with HIV are more likely to test than those without HIV. We also considered a plausible range of unit test costs. The aim was to assess the relationship between cost-per-diagnosis and the incremental cost-effectiveness ratio (ICER) of the additional-testing policy. The discount rate used in the base case was 3% per annum (costs in 2018 U.S. dollars). Results: There was a strong graded relationship between the cost-per-diagnosis and the ICER. Overall, the ICER was below $500 per-DALY-averted (the cost-effectiveness threshold used in primary analysis) so long as the cost-per-diagnosis was below $315. This threshold cost-per-diagnosis was similar according to epidemic and programmatic features including the prevalence of undiagnosed HIV, the HIV incidence and a measure of HIV programme quality (the proportion of HIV diagnosed people having a viral load <1000 copies/mL). However, restricting to women, additional-testing did not appear cost-effective even at a cost-per-diagnosis of below $50, while restricting to men additional-testing was cost-effective up to a cost-per-diagnosis of $585. The threshold cost per diagnosis for testing in men to be cost-effective fell to $256 when the cost-effectiveness threshold was $300 instead of $500, and to $81 when considering a discount rate of 10% per annum. Conclusions: For testing programmes in low-income settings in southern African there is an extremely strong relationship between the cost-per-diagnosis and the cost-per-DALY averted, indicating that the cost-per-diagnosis can be used to monitor the cost-effectiveness of testing programmes.
- ItemHIV treatment as prevention : optimising the impact of expanded HIV treatment programmes(Public Library of Science (PLOS), 2012-07) Delva, Wim; Eaton, Jeffrey W.; Meng, Fei; Fraser, Christophe; White, Richard G.; Vickerman, Peter; Boily, Marie-Claude; Hallett, Timothy B.Until now, decisions about how to allocate ART have largely been based on maximising the therapeutic benefit of ART for patients. Since the results of the HPTN 052 study showed efficacy of antiretroviral therapy (ART) in preventing HIV transmission, there has been increased interest in the benefits of ART not only as treatment, but also in prevention. Resources for expanding ART in the short term may be limited, so the question is how to generate the most prevention benefit from realistic potential increases in the availability of ART. Although not a formal systematic review, here we review different ways in which access to ART could be expanded by prioritising access to particular groups based on clinical or behavioural factors. For each group we consider (i) the clinical and epidemiological benefits, (ii) the potential feasibility, acceptability, and equity, and (iii) the affordability and cost-effectiveness of prioritising ART access for that group. In re-evaluating the allocation of ART in light of the new data about ART preventing transmission, the goal should be to create policies that maximise epidemiological and clinical benefit while still being feasible, affordable, acceptable, and equitable.
- ItemHIV treatment as prevention : systematic comparison of mathematical models of the potential impact of antiretroviral therapy on HIV incidence in South Africa(Public Library of Science -- PLOS, 2012-07) Eaton, Jeffrey W.; Johnson, Leigh F.; Salomon, Joshua A.; Barnighausen, Till; Bendavid, Eran; Bershteyn, Anna; Bloom, David E.; Cambiano, Valentina; Fraser, Christophe; Hontelez, Jan A. C.; Humair, Salal; Klein, Daniel J.; Long, Elisa F.; Phillips, Andrew N.; Pretorius, Carel; Stover, John; Wenger, Edward A.; Williams, Brian G.; Hallett, Timothy B.Background: Many mathematical models have investigated the impact of expanding access to antiretroviral therapy (ART) on new HIV infections. Comparing results and conclusions across models is challenging because models have addressed slightly different questions and have reported different outcome metrics. This study compares the predictions of several mathematical models simulating the same ART intervention programmes to determine the extent to which models agree about the epidemiological impact of expanded ART. Methods and Findings: Twelve independent mathematical models evaluated a set of standardised ART intervention scenarios in South Africa and reported a common set of outputs. Intervention scenarios systematically varied the CD4 count threshold for treatment eligibility, access to treatment, and programme retention. For a scenario in which 80% of HIV-infected individuals start treatment on average 1 y after their CD4 count drops below 350 cells/ml and 85% remain on treatment after 3 y, the models projected that HIV incidence would be 35% to 54% lower 8 y after the introduction of ART, compared to a counterfactual scenario in which there is no ART. More variation existed in the estimated long-term (38 y) reductions in incidence. The impact of optimistic interventions including immediate ART initiation varied widely across models, maintaining substantial uncertainty about the theoretical prospect for elimination of HIV from the population using ART alone over the next four decades. The number of person-years of ART per infection averted over 8 y ranged between 5.8 and 18.7. Considering the actual scale-up of ART in South Africa, seven models estimated that current HIV incidence is 17% to 32% lower than it would have been in the absence of ART. Differences between model assumptions about CD4 decline and HIV transmissibility over the course of infection explained only a modest amount of the variation in model results. Conclusions: Mathematical models evaluating the impact of ART vary substantially in structure, complexity, and parameter choices, but all suggest that ART, at high levels of access and with high adherence, has the potential to substantially reduce new HIV infections. There was broad agreement regarding the short-term epidemiologic impact of ambitious treatment scale-up, but more variation in longer term projections and in the efficiency with which treatment can reduce new infections. Differences between model predictions could not be explained by differences in model structure or parameterization that were hypothesized to affect intervention impact.
- ItemHPTN 071 (PopART) : a cluster-randomized trial of the population impact of an HIV combination prevention intervention including universal testing and treatment : mathematical model(PLoS, 2014-01-15) Cori, Anne; Ayles, Helen; Beyers, Nulda; Schaap, Ab; Floyd, Sian; Sabapathy, Kalpana; Eaton, Jeffrey W.; Hauck, Katharina; Smith, Peter; Griffith, Sam; Moore, Ayana; Donnell, Deborah; Vermund, Sten H.; Fidler, Sarah; Hayes, Richard; Fraser, ChristopheBackground: The HPTN 052 trial confirmed that antiretroviral therapy (ART) can nearly eliminate HIV transmission from successfully treated HIV-infected individuals within couples. Here, we present the mathematical modeling used to inform the design and monitoring of a new trial aiming to test whether widespread provision of ART is feasible and can substantially reduce population-level HIV incidence. Methods and Findings: The HPTN 071 (PopART) trial is a three-arm cluster-randomized trial of 21 large population clusters in Zambia and South Africa, starting in 2013. A combination prevention package including home-based voluntary testing and counseling, and ART for HIV positive individuals, will be delivered in arms A and B, with ART offered universally in arm A and according to national guidelines in arm B. Arm C will be the control arm. The primary endpoint is the cumulative three-year HIV incidence. We developed a mathematical model of heterosexual HIV transmission, informed by recent data on HIV-1 natural history. We focused on realistically modeling the intervention package. Parameters were calibrated to data previously collected in these communities and national surveillance data. We predict that, if targets are reached, HIV incidence over three years will drop by >60% in arm A and >25% in arm B, relative to arm C. The considerable uncertainty in the predicted reduction in incidence justifies the need for a trial. The main drivers of this uncertainty are possible community-level behavioral changes associated with the intervention, uptake of testing and treatment, as well as ART retention and adherence. Conclusions: The HPTN 071 (PopART) trial intervention could reduce HIV population-level incidence by >60% over three years. This intervention could serve as a paradigm for national or supra-national implementation. Our analysis highlights the role mathematical modeling can play in trial development and monitoring, and more widely in evaluating the impact of treatment as prevention.