Browsing by Author "Du Toit, G."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemDevelopoment of a magnetic intra-uterine manipulator(South African Institution of Mechanical Engineering, 2013) Doll, S.; Scheffer, C.; Du Toit, G.This paper introduces the concept of a novel magnetic intra-uterine manipulator, intended to overcome conventional medical devices’ shortcomings, and enabling non-invasive uterine manipulation during surgery. However, analyses have shown that the magnetic manipulator is unable to compete in terms of the range of motion of the existing devices. A limited anterior sagittal rotation range of 60° was observed in a magnetic manipulator compared to a range of 140° for conventional devices. Despite these limitations, use of a magnetic manipulator could eliminate the need for an additional medical assistant during surgery; it is also reusable and thus also more economical. The second goal of the research was to investigate which type of setup would be most successful in effective uterine manipulation. Through concept analysis, a cart-onarch system was deemed most effective. To lift an effective load of 1 N over an air gap of 150 mm, rareearth N38 neodymium (NdFeBr) magnets showed the most promise as magnetic actuators for the manipulator. Finite Element Analysis (FEA) simulations of the magnetic set-up were validated experimentally and produced an acceptable Mean Absolute Error (MAE) of 0.15 N.
- ItemRevival of the magnetar PSR J1622–4950 : observations with MeerKAT, Parkes, XMM-Newton, Swift, Chandra, and NuSTAR(American Astronomical Society, 2018) Camilo, F.; Serylak, M.; Buchner, S.; Merryfield, M.; Kaspi, V. M.; Archibald, R. F.; Bailes, M.; Jameson, A.; Van Straten, W.; Sarkissian, J.; Reynolds, J. E.; Johnston, S.; Hobbs, G.; Abbott, T. D.; Adam, R. M.; Adams, G. B.; Alberts, T.; Andreas, R.; Asad, K. M. B.; Baker, D. E.; Baloyi, T.; Bauermeister, E. F.; Baxana, T.; Bennett, T. G. H.; Bernardi, G.; Booisen, D.; Booth, R. S.; Botha, D. H.; Boyana, L.; Brederode, L. R. S.; Burge, J. P.; Cheetham, T.; Conradie, J.; Conradie, J. P.; Davidson, D. B.; De Bruin, G.; De Swardt, B.; De Villiers, C.; De Villiers, D. I. L.; De Villiers, M. S.; De Villiers, W.; De Waal, C.; Dikgale, M. A.; Du Toit, G.; Du Toit, L. J.; Esterhuyse, S. W. P.; Fanaroff, B.; Fataar, S.; Foley, A. R.; Foste, G.; Fourie, D.; Gamatham, R.; Gatsi, T.; Geschke, R.; Goedhart, S.; Grobler, T. L.; Gumede, S. C.; Hlakola, M. J.; Hokwana, A.; Hoorn, D. H.; Horn, D.; Horrell, J.; Hugo, B.; Isaacson, A.; Jacobs, O.; Jansen Van Rensburg, J. P.; Jonas, J. L.; Jordaan, B.; Joubert, A.; Joubert, F.; Jozsa, G. I. G.; Julie, R.; Julius, C. C.; Kapp, F.; Karastergiou, A.; Karels, F.; Kariseb, M.; Karuppusamy, R.; Kasper, V.; Knox-Davies, E. C.; Koch, D.; Kotze, P. P. A.; Krebs, A.; Kriek, N.; Kriel, H.; Kusel, T.; Lamoor, S.; Lehmensiek, R.; Liebenberg, D.; Liebenberg, I.; Lord, R. T.; Lunsky, B.; Mabombo, N.; Macdonald, T.; Macfarlane, P.; Madisa, K.; Mafhungo, L.; Magnus, L. G.; Magozore, C.; Mahgoub, O.; Main, J. P. L.; Makhathini, S.; Malan, J. A.; Malgas, P.; Manley, J. R.; Manzini, M.; Marais, L.; Marais, N.; Marais, S. J.; Maree, M.; Martens, A.; Matshawule, S. D.; Matthysen, N.; Mauch, T.; McNally, L. D.; Merry, B.; Millenaar, R. P.; Mjikelo, C.; Mkhabela, N.; Mnyandu, N.; Moeng, I. T.; Mokone, O. J.; Monama, T. E.; Montshiwa, K.; Moss, V.; Mphego, M.; New, W.; Ngcebetsha, B.; Ngoasheng, K.; Niehaus, H.; Ntuli, P.; Nzama, A.; Obies, F.; Obrocka, M.; Ockards, M. T.; Olyn, C.; Oozeer, N.; Otto, A. J.; Padayachee, Y.; Passmoor, S.; Patel, A. A.; Paula, S.; Peens-Hough, A.; Pholoholo, B.; Prozesky, P.; Rakoma, S.; Ramaila, A. J. T.; Rammala, I.; Ramudzuli, Z. R.; Rasivhaga, M.; Ratcliffe, S.; Reader, H. C.; Renil, R.; Richter, L.; Robyntjies, A.; Rosekrans, D.; Rust, A.; Salie, S.; Sambu, N.; Schollar, C. T. G.; Schwardt, L.; Seranyane, S.; Sethosa, G.; Sharpe, C.; Siebrits, R.; Sirothia, S. K.; Slabber, M. J.; Smirnov, O.; Smith, S.; Sofeya, L.; Songqumase, N.; Spann, R.; Stappers, B.; Steyn, D.; Steyn, T. J.; Strong, R.; Struthers, A.; Struthers, A.; Stuart, C.; Sunnylall, P.; Swart, P. S.; Taljaard, B.; Tasse, C.; Taylor, G.; Theron, I. P.; Thondikulam, V.; Thorat, K.; Tiplady, A.; Toruvanda, O.; Van Aardt, J.; Van Balla, T.; Van den Heever, L.; Van der Byl, A.; Van der Merwe, C.; Van der Merwe, P.; Van Niekerk, P. C.; Van Rooyen, R.; Van Staden, J. P.; Van Tonder, V.; Van Wyk, R.; Wait, I.; Walker, A. L.; Wallace, B.; Welz, M.; Williams, L. P.; Xaia, B.; Young, N.; Zitha, S.New radio (MeerKAT and Parkes) and X-ray (XMM-Newton, Swift, Chandra, and NuSTAR) observations of PSR J1622–4950 indicate that the magnetar, in a quiescent state since at least early 2015, reactivated between 2017 March 19 and April 5. The radio flux density, while variable, is approximately 100× larger than during its dormant state. The X-ray flux one month after reactivation was at least 800× larger than during quiescence, and has been decaying exponentially on a 111 ± 19 day timescale. This high-flux state, together with a radio-derived rotational ephemeris, enabled for the first time the detection of X-ray pulsations for this magnetar. At 5%, the 0.3–6 keV pulsed fraction is comparable to the smallest observed for magnetars. The overall pulsar geometry inferred from polarized radio emission appears to be broadly consistent with that determined 6–8 years earlier. However, rotating vector model fits suggest that we are now seeing radio emission from a different location in the magnetosphere than previously. This indicates a novel way in which radio emission from magnetars can differ from that of ordinary pulsars. The torque on the neutron star is varying rapidly and unsteadily, as is common for magnetars following outburst, having changed by a factor of 7 within six months of reactivation.