Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Browse the repository
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Du Preez, Alwyn Britz"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Studies on macadamia nut quality
    (Stellenbosch : Stellenbosch University, 2015-04) Du Preez, Alwyn Britz; Theron, K. I.; Steyn, Willem J.; Stellenbosch University. Faculty of Agrisciences. Dept. of Horticulture
    ENGLISH ABSTRACT: The South African macadamia industry is centred in the sub-tropical regions of South Africa with 40% of the plantings in the Lowveld. Growers receive higher pay-outs for high kernel recovery and unblemished (not discoloured) whole kernels. It is known that the same cultivar in the Lowveld region, produces nuts that differ in kernel recovery, whole kernel recovery and kernel discolouration. Therefore to develop optimal management strategies to maximize productivity and profitability of macadamias, factors that influence kernel recovery, whole kernel recovery and kernel discolouration needed to be investigated. The fruit structures are formed the first 90 days after anthesis and the fruit continues to grow until 12 to 15 weeks after anthesis until the shell hardens. Climate, soil moisture, cross-pollination and nutrition influence this process which determines the shell thickness and kernel size which in turn both determine kernel recovery. A large set of historical data from different regions were used to establish and isolate possible factors involved in kernel recovery, whole kernel recovery and kernel discolouration. These differed between the six regions over two seasons. High kernel recovery was associated with high orchard altitude, good cross-pollination, high crop load (high yield), early season harvesting and processing of nut-in-shell (NIS), high leaf boron concentrations in Nov., water management using deficit irrigation and low daily maximum relative humidity during the nut growth stage (Oct. to middle Jan.). High whole kernel recovery was associated with high kernel recovery, early season harvesting and processing of NIS, Bungay curing system of NIS compared to ambient air, low vapour pressure deficit during the nut maturation period (middle Jan. to harvest), elevated leaf boron and copper concentrations and low manganese leaf concentrations in Nov. High crop load, no cross pollination, low leaf nitrogen and zinc and high leaf potassium concentrations in Nov. were associated with low kernel discolouration. In order to develop possible orchard practices that increase kernel recovery, whole kernel recovery and decrease kernel discolouration, two irrigation trials and one kaolin trial were conducted. In the two irrigation trials, water stress was induced over two growing seasons (2011-2013) by applying different levels of irrigation at different phenological stages. Kernel recovery was not affected by any of the treatments, but water stress could not be applied continuously due to frequent high rainfall. Moderate water stress did not influence yield, only trees that were over watered during a drier premature nut drop stage during the 2011/12 season increased yield, although it could not be repeated the following season during a wetter premature nut drop stage. In the kaolin trial, the efficacy of kaolin foliar application was evaluated to reduce heat stress. Kaolin applications did not affect kernel recovery, nut yield or quality. Temperature during the study was not continuously high (>30 ⁰C), thus heat stress could not be mitigated. We did however establish that up to five layers of foliar applied kaolin did not significantly reduce individual leaf photosynthesis.

DSpace software copyright © 2002-2025 LYRASIS | Supported by Stellenbosch University


  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback