Browsing by Author "Dicks, Anelda"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- ItemValue at risk and expected shortfall : traditional measures and extreme value theory enhancements with a South African market application(Stellenbosch : Stellenbosch University, 2013-12) Dicks, Anelda; Conradie, W. J.; De Wet, Tertius; Stellenbosch University. Faculty of Economic and Management Sciences. Dept. of Statistics and Actuarial Science.ENGLISH ABSTRACT: Accurate estimation of Value at Risk (VaR) and Expected Shortfall (ES) is critical in the management of extreme market risks. These risks occur with small probability, but the financial impacts could be large. Traditional models to estimate VaR and ES are investigated. Following usual practice, 99% 10 day VaR and ES measures are calculated. A comprehensive theoretical background is first provided and then the models are applied to the Africa Financials Index from 29/01/1996 to 30/04/2013. The models considered include independent, identically distributed (i.i.d.) models and Generalized Autoregressive Conditional Heteroscedasticity (GARCH) stochastic volatility models. Extreme Value Theory (EVT) models that focus especially on extreme market returns are also investigated. For this, the Peaks Over Threshold (POT) approach to EVT is followed. For the calculation of VaR, various scaling methods from one day to ten days are considered and their performance evaluated. The GARCH models fail to converge during periods of extreme returns. During these periods, EVT forecast results may be used. As a novel approach, this study considers the augmentation of the GARCH models with EVT forecasts. The two-step procedure of pre-filtering with a GARCH model and then applying EVT, as suggested by McNeil (1999), is also investigated. This study identifies some of the practical issues in model fitting. It is shown that no single forecasting model is universally optimal and the choice will depend on the nature of the data. For this data series, the best approach was to augment the GARCH stochastic volatility models with EVT forecasts during periods where the first do not converge. Model performance is judged by the actual number of VaR and ES violations compared to the expected number. The expected number is taken as the number of return observations over the entire sample period, multiplied by 0.01 for 99% VaR and ES calculations.