Browsing by Author "De Andrade, Mariza"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemeMERGE Phenome-Wide Association Study (PheWAS) identifies clinical associations and pleiotropy for stop-gain variants(BioMed Central, 2016) Verma, Anurag; Verma, Shefali S.; Pendergrass, Sarah A.; Crawford, Dana C.; Crosslin, David R.; Kuivaniemi, Helena; Bush, William S.; Bradford, Yuki; Kullo, Iftikhar; Bielinski, Suzette J.; Li, Rongling; Denny, Joshua C.; Peissig, Peggy; Hebbring, Scott; De Andrade, Mariza; Ritchie, Marylyn D.; Tromp, GerardBackground: We explored premature stop-gain variants to test the hypothesis that variants, which are likely to have a consequence on protein structure and function, will reveal important insights with respect to the phenotypes associated with them. We performed a phenome-wide association study (PheWAS) exploring the association between a selected list of functional stop-gain genetic variants (variation resulting in truncated proteins or in nonsense-mediated decay) and an extensive group of diagnoses to identify novel associations and uncover potential pleiotropy. Results: In this study, we selected 25 stop-gain variants: 5 stop-gain variants with previously reported phenotypic associations, and a set of 20 putative stop-gain variants identified using dbSNP. For the PheWAS, we used data from the electronic MEdical Records and GEnomics (eMERGE) Network across 9 sites with a total of 41,057 unrelated patients. We divided all these samples into two datasets by equal proportion of eMERGE site, sex, race, and genotyping platform. We calculated single effect associations between these 25 stop-gain variants and ICD-9 defined case-control diagnoses. We also performed stratified analyses for samples of European and African ancestry. Associations were adjusted for sex, site, genotyping platform and the first three principal components to account for global ancestry. We identified previously known associations, such as variants in LPL associated with hyperglyceridemia indicating that our approach was robust. We also found a total of three significant associations with p < 0.01 in both datasets, with the most significant replicating result being LPL SNP rs328 and ICD-9 code 272. 1 “Disorder of Lipoid metabolism” (pdiscovery = 2.59x10-6, preplicating = 2.7x10-4). The other two significant replicated associations identified by this study are: variant rs1137617 in KCNH2 gene associated with ICD-9 code category 244 “Acquired Hypothyroidism” (pdiscovery = 5.31x103, preplicating = 1.15x10-3) and variant rs12060879 in DPT gene associated with ICD-9 code category 996 “Complications peculiar to certain specified procedures” (pdiscovery = 8. 65x103, preplicating = 4.16x10-3).
- ItemShared genetic risk factors of intracranial, abdominal, and thoracic aneurysms(American Heart Association, 2016-07-14) Van 't Hof, Femke N. G.; Ruigrok, Ynte M.; Lee, Cue Hyunkyu; Ripke, Stephan; Anderson, Graig; De Andrade, Mariza; Tromp, GerardBackground: Intracranial aneurysms (IAs), abdominal aortic aneurysms (AAAs), and thoracic aortic aneurysms (TAAs) all have a familial predisposition. Given that aneurysm types are known to co‐occur, we hypothesized that there may be shared genetic risk factors for IAs, AAAs, and TAAs. Methods and Results: We performed a mega‐analysis of 1000 Genomes Project‐imputed genome‐wide association study (GWAS) data of 4 previously published aneurysm cohorts: 2 IA cohorts (in total 1516 cases, 4305 controls), 1 AAA cohort (818 cases, 3004 controls), and 1 TAA cohort (760 cases, 2212 controls), and observed associations of 4 known IA, AAA, and/or TAA risk loci (9p21, 18q11, 15q21, and 2q33) with consistent effect directions in all 4 cohorts. We calculated polygenic scores based on IA‐, AAA‐, and TAA‐associated SNPs and tested these scores for association to case‐control status in the other aneurysm cohorts; this revealed no shared polygenic effects. Similarly, linkage disequilibrium–score regression analyses did not show significant correlations between any pair of aneurysm subtypes. Last, we evaluated the evidence for 14 previously published aneurysm risk single‐nucleotide polymorphisms through collaboration in extended aneurysm cohorts, with a total of 6548 cases and 16 843 controls (IA) and 4391 cases and 37 904 controls (AAA), and found nominally significant associations for IA risk locus 18q11 near RBBP8 to AAA (odds ratio [OR]=1.11; P=4.1×10−5) and for TAA risk locus 15q21 near FBN1 to AAA (OR=1.07; P=1.1×10−3). Conclusions: Although there was no evidence for polygenic overlap between IAs, AAAs, and TAAs, we found nominally significant effects of two established risk loci for IAs and TAAs in AAAs. These two loci will require further replication.