Browsing by Author "Chytry, Milan"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
- ItemDisentangling vegetation diversity from climate–energy and habitat heterogeneity for explaining animal geographic patterns(Wiley Open Access, 2016) Jimenez-Alfaro, Borja; Chytry, Milan; Mucina, Ladislav; Grace, James B.; Rejmanek, MarcelBroad-scale animal diversity patterns have been traditionally explained by hypotheses focused on climate–energy and habitat heterogeneity, without con- sidering the direct influence of vegetation structure and composition. However, integrating these factors when considering plant–animal correlates still poses a major challenge because plant communities are controlled by abiotic factors that may, at the same time, influence animal distributions. By testing whether the number and variation of plant community types in Europe explain coun- try-level diversity in six animal groups, we propose a conceptual framework in which vegetation diversity represents a bridge between abiotic factors and ani- mal diversity. We show that vegetation diversity explains variation in animal richness not accounted for by altitudinal range or potential evapotranspiration, being the best predictor for butterflies, beetles, and amphibians. Moreover, the dissimilarity of plant community types explains the highest proportion of varia- tion in animal assemblages across the studied regions, an effect that outper- forms the effect of climate and their shared contribution with pure spatial variation. Our results at the country level suggest that vegetation diversity, as estimated from broad-scale classifications of plant communities, may contribute to our understanding of animal richness and may be disentangled, at least to a degree, from climate–energy and abiotic habitat heterogeneity.
- ItemEUNIS Habitat Classification: Expert system, characteristic species combinations and distribution maps of European habitats(2020-07) Chytry, Milan; Tichy, Lubomir; Hennekens, Stephan M.; Knollova, Ilona; Janssen, John A. M.; Rodwell, John S.; Peterka, Tomas; Marceno, Corrado; Landucci, Flavia; Danihelka, Jiri; Hajek, Michal; Dengler, Jurgen; Novak, Pavel; Zukal, Dominik; Jimenez-Alfaro, Borja; Mucina, Ladislav; Abdulhak, Sylvain; Acic, Svetlana; Agrillo, Emiliano; Attorre, Fabio; Bergmeier, Erwin; Biurrun, Idoia; Boch, Steffen; Boloni, Janos; Bonari, Gianmaria; Braslavskaya, Tatiana; Bruelheide, Helge; Campos, Juan Antonio; Carni, Andraz; Casella, Laura; Cuk, Mirjana; Custerevska, Renata; De Bie, Els; Delbosc, Pauline; Demina, Olga; Didukh, Yakiv; Dite, Daniel; Dziuba, Tetiana; Ewald, Jorg; Gavilan, Rosario G.; Gegout, Jean-Claude; del Galdo, Gian Pietro Giusso; Golub, Valentin; Goncharova, Nadezhda; Goral, Friedemann; Graf, Ulrich; Indreica, Adrian; Isermann, Maike; Jandt, Ute; Jansen, Florian; Jansen, Jan; Jaskova, Anni; Jirousek, Martin; Kacki, Zygmunt; Kalnikova, Veronika; Kavgacı, Ali; Khanina, Larisa; Korolyuk, Andrey Yu.; Kozhevnikova, Mariya; Kuzemko, Anna; Kuzmic, Filip; Kuznetsov, Oleg L.; Laiviņs, Maris; Lavrinenko, Igor; Lavrinenko, Olga; Lebedeva, Maria; Lososova, Zdenka; Lysenko, Tatiana; Maciejewski, Lise; Mardari, Constantin; Marinsek, Aleksander; Napreenko, Maxim G.; Onyshchenko, Viktor; Perez-Haase, Aaron; Pielech, Remigiusz; Prokhorov, Vadim; Rasomavicius, Valerijus; Rojo, Maria Pilar Rodriguez; Rusina, Solvita; Schrautzer, Joachim; Sibik, Jozef; Silc, Urban; Skvorc, Zeljko; Smagin, Viktor A.; Stancic, Zvjezdana; Stanisci, Angela; Tikhonova, Elena; Tonteri, Tiina; Uogintas, Domas; Valachovic, Milan; Vassilev, Kiril; Vynokurov, Denys; Willner, Wolfgang; Yamalov, Sergey; Evans, Douglas; Lund, Mette Palitzsch; Spyropoulou, Rania; Tryfon, Eleni; Schaminee, Joop H. J.Abstract: Aim: The EUNIS Habitat Classification is a widely used reference framework for European habitat types (habitats), but it lacks formal definitions of individual habitats that would enable their unequivocal identification. Our goal was to develop a tool for assigning vegetation-plot records to the habitats of the EUNIS system, use it to classify a European vegetation-plot database, and compile statistically-derived characteristic species combinations and distribution maps for these habitats. Location: Europe. Methods: We developed the classification expert system EUNIS-ESy, which contains definitions of individual EUNIS habitats based on their species composition and geographic location. Each habitat was formally defined as a formula in a computer language combining algebraic and set-theoretic concepts with formal logical operators. We applied this expert system to classify 1,261,373 vegetation plots from the European Vegetation Archive (EVA) and other databases. Then we determined diagnostic, constant and dominant species for each habitat by calculating species-to-habitat fidelity and constancy (occurrence frequency) in the classified data set. Finally, we mapped the plot locations for each habitat. Results: Formal definitions were developed for 199 habitats at Level 3 of the EUNIS hierarchy, including 25 coastal, 18 wetland, 55 grassland, 43 shrubland, 46 forest and 12 man-made habitats. The expert system classified 1,125,121 vegetation plots to these habitat groups and 73,188 to other habitats, while 63,064 plots remained unclassified or were classified to more than one habitat. Data on each habitat were summarized in factsheets containing habitat description, distribution map, corresponding syntaxa and characteristic species combination. Conclusions: EUNIS habitats were characterized for the first time in terms of their species composition and distribution, based on a classification of a European database of vegetation plots using the newly developed electronic expert system EUNIS-ESy. The data provided and the expert system have considerable potential for future use in European nature conservation planning, monitoring and assessment.
- ItemMeasuring size and composition of species pools : a comparison of dark diversity estimates(Wiley Open Access, 2016) De Bello, Francesco; Fibich, Pavel; Zeleny, David; Kopecky, Martin; Mudrak, Ondrej; Chytry, Milan; Pysek, Petr; Wild, Jan; Michalcova, Dana; Sadlo, Jiri; Smilauer, Petr; Leps, Jan; Partel, MeelisEcological theory and biodiversity conservation have traditionally relied on the number of species recorded at a site, but it is agreed that site richness represents only a portion of the species that can inhabit particular ecological conditions, that is, the habitat-specific species pool. Knowledge of the species pool at different sites enables meaningful comparisons of biodiversity and provides insights into processes of biodiversity formation. Empirical studies, however, are limited due to conceptual and methodological difficulties in determining both the size and composition of the absent part of species pools, the so-called dark diversity. We used >50,000 vegetation plots from 18 types of habitats throughout the Czech Republic, most of which served as a training dataset and 1083 as a subset of test sites. These data were used to compare predicted results from three quantitative methods with those of previously published expert estimates based on species habitat preferences: (1) species co-occurrence based on Beals' smoothing approach; (2) species ecological requirements, with envelopes around community mean Ellenberg values; and (3) species distribution models, using species environmental niches modeled by Biomod software. Dark diversity estimates were compared at both plot and habitat levels, and each method was applied in different configurations. While there were some differences in the results obtained by different methods, particularly at the plot level, there was a clear convergence, especially at the habitat level. The better convergence at the habitat level reflects less variation in local environmental conditions, whereas variation at the plot level is an effect of each particular method. The co-occurrence agreed closest the expert estimate, followed by the method based on species ecological requirements. We conclude that several analytical methods can estimate species pools of given habitats. However, the strengths and weaknesses of different methods need attention, especially when dark diversity is estimated at the plot level.
- ItemNaturalization of European plants on other continents : the role of donor habitats(National Academy of Sciences, 2019) Kalusova, Veronika; Chytry, Milan; Van Kleunen, Mark; Mucina, Ladislav; Dawson, Wayne; Essl, Franz; Kreft, Holger; Pergl, Jan; Weigelt, Patrick; Winter, Marten; Pysek, PetrThe success of European plant species as aliens worldwide is thought to reflect their association with human-disturbed environments. However, an explicit test including all human-made, seminatural and natural habitat types of Europe, and their contributions as donor habitats of naturalized species to the rest of the globe, has been missing. Here we combine two databases, the European Vegetation Checklist and the Global Naturalized Alien Flora, to assess how human influence in European habitats affects the probability of naturalization of their plant species on other continents. A total of 9,875 native European vascular plant species were assigned to 39 European habitat types; of these, 2,550 species have become naturalized somewhere in the world. Species that occur in both human-made habitats and seminatural or natural habitats in Europe have the highest probability of naturalization (64.7% and 64.5% of them have naturalized). Species associated only with human-made or seminatural habitats still have a significantly higher probability of becoming naturalized (41.7% and 28.6%, respectively) than species confined to natural habitats (19.4%). Species associated with arable land and human settlements were recorded as naturalized in the largest number of regions worldwide. Our findings highlight that plant species’ association with native-range habitats disturbed by human activities, combined with broad habitat range, play an important role in shaping global patterns of plant invasions.
- ItemOpen minded and open access : introducing NeoBiota, a new peer-reviewed journal of biological invasions(Pensoft, 2011) Kuhn, Ingolf; Kowarik, Ingo; Kollmann, Johannes; Starfinger, Uwe; Bacher, Sven; Blackburn, Tim M.; Bustamante, Ramiro O.; Celesti-Grapow, Laura; Chytry, Milan; Colautti, Robert I.; Essl, Franz; Foxcroft, Llewellyn C.; Garcia-Berthou, Emili; Gollasch, Stephan; Hierro, Jose; Hufbauer, Ruth A.; Hulme, Philip E.; Jarosik, Vojtech; Jeschke, Jonathan M.; Karrer, Gerhard; Mack, Richard N.; Molofsky, Jane; Murray, Brad R.; Nentwig, Wolfgang; Osborne, Bruce; Pysek, Petr; Rabitsch, Wolfgang; Rejmanek, Marcel; Roques, Alain; Shaw, Richard; Sol, Daniel; Van Kleunen, Mark; Vila, Montserrat; Von der Lippe, Moritz; Wolfe, Lorne M.; Penev, LyubomirThe Editorial presents the focus, scope, policies, and the inaugural issue of NeoBiota, a new open access peer-reviewed journal of biological invasions. The new journal NeoBiota is a continuation of the former NEOBIOTA publication series. The journal will deal with all aspects of invasion biology and impose no restrictions on manuscript size neither on use of color. NeoBiota implies an XML-based editorial workflow and several cutting-edge innovations in publishing and dissemination, such as semantic markup of and enhancements to published texts, data publication, and extensive cross-linking within the journal and to external sources.
- ItemPhylogenetic structure of alien plant species pools from European donor habitats(John Wiley & Sons Ltd., 2021) Kalusova, Veronika; Cubino, Josep Padulles; Fristoe, Trevor S.; Chytry, Milan; Van Kleunen, Mark; Dawson, Wayne; Essl, Franz; Kreft, Holger; Mucina, Ladislav; Pergl, Jan; Pysek, Petr; Weigelt, Patrick; Winter, Marten; Lososova, ZdenkaAim: Many plant species native to Europe have naturalized worldwide. We tested whether the phylogenetic structure of the species pools of European habitats is related to the proportion of species from each habitat that has naturalized outside Europe (habitat’s donor role) and whether the donated species are more phylogenetically related to each other than expected by chance. Location: Europe (native range), the rest of the world (invaded range). Time period: Last c. 100 years. Major taxa studied: Angiospermae. Methods: We selected 33 habitats in Europe and analysed their species pools, including 9,636 plant species, of which 2,293 have naturalized outside Europe. We assessed the phylogenetic structure of each habitat as the difference between the observed and expected mean pairwise phylogenetic distance (MPD) for (a) the whole species pool and (b) subgroups of species that have naturalized outside Europe and those that have not. We used generalized linear models to test for the effects of the phylogenetic structure and the level of human influence on the habitat’s donor role.
- ItemSimilarity of introduced plant species to native ones facilitates naturalization, but differences enhance invasion success(Nature Research (part of Springer Nature), 2018-11-06) Divisek, Jan; Chytry, Milan; Beckage, Brian; Gotelli, Nicholas J.; Lososova, Zdenka; Pysek, Petr; Richardson, David M.; Molofsky, JaneENGLISH ABSTRACT: The search for traits associated with plant invasiveness has yielded contradictory results, in part because most previous studies have failed to recognize that different traits are important at different stages along the introduction–naturalization–invasion continuum. Here we show that across six different habitat types in temperate Central Europe, naturalized non-invasive species are functionally similar to native species occurring in the same habitat type, but invasive species are different as they occupy the edge of the plant functional trait space represented in each habitat. This pattern was driven mainly by the greater average height of invasive species. These results suggest that the primary determinant of successful establishment of alien species in resident plant communities is environmental filtering, which is expressed in similar trait distributions. However, to become invasive, established alien species need to be different enough to occupy novel niche space, i.e. the edge of trait space.