Browsing by Author "Chimes, Mark Jonathan"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- ItemUltraproducts and Los’s Theorem: A Category-Theoretic Analysis(Stellenbosch : Stellenbosch University, 2017-03) Chimes, Mark Jonathan; Boxall, Gareth John; Stellenbosch University. Faculty of Science. Dept. of Mathematical SciencesENGLISH ABSTRACT : Ultraproducts are an important construction in model theory, especially as applied to algebra. Given some family of structures of a certain type, an ultraproduct of this family is a single structure which, in some sense, captures the important aspects of the family, where “important” is defined relative to a set of sets called an ultrafilter, which encodes which subfamilies are considered “large”. This follows from Lo´s’s Theorem, namely, the Fundamental Theorem of Ultraproducts, which states that every first-order sentence is true of the ultraproduct if, and only if, there is some “large” subfamily of the family such that it is true of every structure in this subfamily. In this dissertation, ultraproducts are examined both from the standard model-theoretic, as well as from the category-theoretic view. Some potential problems with the categorytheoretic definition of ultraproducts are pointed out, and it is argued that these are not as great an issue as first perceived. A general version of Lo´s’s Theorem is shown to hold for category-theoretic ultraproducts in general. This makes use of the concept of injectivity of a (compact) tree, which is intended to generalize truth of first-order formulae (under given assignments of variables), and, in the category of relational structures, corresponds exactly to first-order formulae. This type of thinking leads to a means of characterizing fields in the category of rings, and a new proof that every ultraproduct of fields is a field, which takes place entirely in the category of rings (along with the inclusion of the category of fields). Finally, the family of all (category-theoretic) ultraproducts on a given family is shown to arise from the “codensity monad" of the functor which includes the category of finite families into the category of families. In this sense, it is shown that ultraproducts are a rather natural construction category-theoretically speaking.