Browsing by Author "Cardenas, Carlos"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemAutomated radiation treatment planning for cervical cancer(Elsevier, 2020-10) Rhee, Dong Joo; Jhingran, Anuja; Kisling, Kelly; Cardenas, Carlos; Simonds, Hannah; Court, LaurenceThe radiation treatment-planning process includes contouring, planning, and reviewing the final plan, and each component requires substantial time and effort from multiple experts. Automation of treatment planning can save time and reduce the cost of radiation treatment, and potentially provides more consistent and better quality plans. With the recent breakthroughs in computer hardware and artificial intelligence technology, automation methods for radiation treatment planning have achieved a clinically acceptable level of performance in general. At the same time, the automation process should be developed and evaluated independently for different disease sites and treatment techniques as they are unique from each other. In this article, we will discuss the current status of automated radiation treatment planning for cervical cancer for simple and complex plans and corresponding automated quality assurance methods. Furthermore, we will introduce Radiation Planning Assistant, a web-based system designed to fully automate treatment planning for cervical cancer and other treatment sites.
- ItemRadiation planning assistant - a streamlined, fully automated radiotherapy treatment planning system(Journal of Visualized Experiments, 2018) Court, Laurence E.; Kisling, Kelly; McCarroll, Rachel; Zhang, Lifei; Yang, Jinzhong; Simonds, Hannah; Du Toit, Monique; Trauernicht, Chris; Burger, Hester; Parkes, Jeannette; Mejia, Mike; Bojador, Maureen; Balter, Peter; Branco, Daniela; Steinmann, Angela; Baltz, Garrett; Gay, Skylar; Anderson, Brian; Cardenas, Carlos; Jhingran, Anuja; Shaitelman, Simona; Bogler, Oliver; Schmeller, Kathleen; Followill, David; Howell, Rebecca; Nelson, Christopher; Peterson, Christine; Beadle, BethThe Radiation Planning Assistant (RPA) is a system developed for the fully automated creation of radiotherapy treatment plans, including volume-modulated arc therapy (VMAT) plans for patients with head/neck cancer and 4-field box plans for patients with cervical cancer. It is a combination of specially developed in-house software that uses an application programming interface to communicate with a commercial radiotherapy treatment planning system. It also interfaces with a commercial secondary dose verification software. The necessary inputs to the system are a Treatment Plan Order, approved by the radiation oncologist, and a simulation computed tomography (CT) image, approved by the radiographer. The RPA then generates a complete radiotherapy treatment plan. For the cervical cancer treatment plans, no additional user intervention is necessary until the plan is complete. For head/neck treatment plans, after the normal tissue and some of the target structures are automatically delineated on the CT image, the radiation oncologist must review the contours, making edits if necessary. They also delineate the gross tumor volume. The RPA then completes the treatment planning process, creating a VMAT plan. Finally, the completed plan must be reviewed by qualified clinical staff.