Browsing by Author "Cadotte, Marc W."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemBiodiversity assessments : origin matters(Public Library of Science, 2018-11-13) Pauchard, Anibal; Meyerson, Laura A.; Bacher, Sven; Blackburn, Tim M.; Brundu, Giuseppe; Cadotte, Marc W.; Courchamp, Franck; Essl, Franz; Genovesi, Piero; Haider, Sylvia; Holmes, Nick D.; Hulme, Philip E.; Jeschke, Jonathan M.; Lockwood, Julie L.; Novoa, Ana; Nunez, Martin A.; Peltzer, Duane A.; Pysek, Petr; Richardson, David M.; Simberloff, Daniel; Smith, Kevin; Van Wilgen, Brian W.; Vila, Montserrat; Wilson, John R. U.; Winter, Marten; Zenni, Rafael D.Recent global efforts in biodiversity accounting, such as those undertaken through the Convention on Biological Diversity (CBD) and Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES), are vital if we are to track conservation progress, ensure that we can address the challenges of global change, and develop powerful and scientifically sound indicators. Schlaepfer [1] proposes that we should work toward inventories of biodiversity that account for native and non-native species regardless of species origin and ecological context. We strongly disagree with the approach of combining counts of native and non-native species because this will reduce our capacity to detect the effects of non-native species on native biodiversity with potentially devastating consequences. Compelling and abundant evidence demonstrates that some non-native species can become invasive and produce major ecosystem disruptions and even native species extinction. Unfortunately, we still cannot be certain which non-native species will be the most detrimental (e.g., [2]). Combining native and non-native species together into a single biodiversity index would not only inflate biodiversity estimates and risk promoting the spread of invasive non-native species but would also ignore the fundamental ecological differences between the two groups.
- ItemQuantifying the invasiveness of species(Pensoft, 2014-04-17) Colautti, Robert I.; Parker, John D.; Cadotte, Marc W.; Pysek, Petr; Brown, Cynthia S.; Sax, Dov F.; Richardson, David M.The success of invasive species has been explained by two contrasting but non-exclusive views: (i) intrinsic factors make some species inherently good invaders; (ii) species become invasive as a result of extrinsic ecological and genetic influences such as release from natural enemies, hybridization or other novel ecological and evolutionary interactions. These viewpoints are rarely distinguished but hinge on distinct mechanisms leading to different management scenarios. To improve tests of these hypotheses of invasion success we introduce a simple mathematical framework to quantify the invasiveness of species along two axes: (i) interspecific differences in performance among native and introduced species within a region, and (ii) intraspecific differences between populations of a species in its native and introduced ranges. Applying these equations to a sample dataset of occurrences of 1,416 plant species across Europe, Argentina, and South Africa, we found that many species are common in their native range but become rare following introduction; only a few introduced species become more common. Biogeographical factors limiting spread (e.g. biotic resistance, time of invasion) therefore appear more common than those promoting invasion (e.g. enemy release). Invasiveness, as measured by occurrence data, is better explained by inter-specific variation in invasion potential than biogeographical changes in performance. We discuss how applying these comparisons to more detailed performance data would improve hypothesis testing in invasion biology and potentially lead to more efficient management strategies.