Browsing by Author "Bowie, Rauri C. K."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemEvidence for panmixia despite barriers to gene flow in the southern African endemic, Caffrogobius caffer (Teleostei: Gobiidae)(BioMed Central, 2008-12) Neethling, Marlene; Matthee, Conrad A.; Bowie, Rauri C. K.; Von der Heyden, SophieBackground: Oceanography and life-history characteristics are known to influence the genetic structure of marine species, however the relative role that these factors play in shaping phylogeographic patterns remains unresolved. The population genetic structure of the endemic, rocky shore dwelling Caffrogobius caffer was investigated across a known major oceanographic barrier, Cape Agulhas, which has previously been shown to strongly influence genetic structuring of South African rocky shore and intertidal marine organisms. Given the variable and dynamic oceanographical features of the region, we further sought to test how the pattern of gene flow between C. caffer populations is affected by the dominant Agulhas and Benguela current systems of the southern oceans. Results: The variable 5' region of the mtDNA control region was amplified for 242 individuals from ten localities spanning the distributional range of C. caffer. Fifty-five haplotypes were recovered and in stark contrast to previous phylogeographic studies of South African marine species, C. caffer showed no significant population genetic structuring along 1300 km of coastline. The parsimony haplotype network, AMOVA and SAMOVA analyses revealed panmixia. Coalescent analyses reveal that gene flow in C. caffer is strongly asymmetrical and predominantly affected by the Agulhas Current. Notably, there was no gene flow between the east coast and all other populations, although all other analyses detect no significant population structure, suggesting a recent divergence. The mismatch distribution suggests that C. caffer underwent a population expansion at least 14 500 years ago. Conclusion: We propose several possible life-history adaptations that could have enabled C. caffer to maintain gene flow across its distributional range, including a long pelagic larval stage. We have shown that life-history characteristics can be an important contributing factor to the phylogeography of marine species and that the effects of oceanography do not necessarily suppress its influence on effective dispersal.
- ItemFine-scale biogeography : tidal elevation strongly affects population genetic structure and demographic history in intertidal fishes(University of California, eScholarship, 2013) Von der Heyden, Sophie; Gildenhuys, Enelge; Bernardi, Giacomo; Bowie, Rauri C. K.Numerous studies have demonstrated population genetic structuring in marine species, yet few have investigated the effect of vertical zonation on gene flow and population structure. Here we use three sympatric, closely related clinid species, Clinus cottoides, C. superciliosus and Muraenoclinus dor‐ salis, to test whether zonation on South African intertidal rocky shores affects phylogeographic patterns. We show that the high‐shore restricted species has reduced gene flow and considerably higher FST val‐ ues (FST = 0.9) than the mid‐ and low‐shore species (FST < 0.14). Additionally, we provide evidence for remarkably different demographic and evolutionary histories, ranging from extreme population bottle‐ necks to population persistence, which are probably linked to effective population size and habitat spe‐ cialisation. This study further highlights the need for a multispecies approach to unravel the biological and evolutionary processes that drive extant population genetic patterns in marine species, as even closely related species with similar life histories show highly variable results.