Browsing by Author "Botha, Shirmone"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- ItemAssessing the cyto-genotoxic impacts of un-neutralised and pH-neutralised acid mine drainage on the human breast cancer cell line, MCF-7(Stellenbosch : Stellenbosch University, 2015-12) Botha, Shirmone; Botha-Oberholster, Anna-Maria; Genthe, B.; Oberholster, P.; Stellenbosch University. Faculty of Agrisciences. Dept. of Genetics.ENGLISH ABSTRACT: The use of toxicity tests to evaluate the quality of streams affected by mixtures such as acid mine drainage (AMD), adds value to assessments whereby site-specific toxicological data may identify toxicants that pose a threat to humans. To successfully evaluate the risk of combined mixtures, an improved understanding of the individual components, their uptake, metabolism, excretion and mode of action is required. This study aimed to identify the extent of AMD toxicity in a dose dependant manner on the MCF-7 cell line. The first study site associated with gold mining was chosen as the Tweelopies Stream situated in the Gauteng province of South Africa. The AMD effluent (un-neutralised) contaminating the Tweelopies Stream had undergone pH-neutralisation using a reactor-bed limestone technology incorporating the use of both calcium carbonate (CaCO3) powder and limestone beds. The second study site, the Kromdraai River, is situated in the eMalahleni region of South Africa where a predominance of coal mining exists. The pH -neutralisation of the AMD (un-neutralised) contaminated Kromdraai River was performed using a caustic soda (NaOH) precipitation technique. This study demonstrated the rapid and effective application of the comet assay as a screening tool for AMD-associated DNA breakages in the human cell line, MCF-7. Moreover, the study analysed parameters of cellular survival, DNA fragmentation and variations in morphologies indicative of cellular death. Collectively, the cyto-genetic aberrations observed in the MCF-7 cells as a result of exposure to gold and coal mining associated AMD, confirms the urgency of incorporating high-throughput screening in ecological toxicity assessment to evaluate cellular damage at genetic levels in low dose exposures where detection might be missed.