Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Browse the repository
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Beyl, Talita"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Cyanobacterial growth in minimally amended anaerobic digestion effluent and flue-gas
    (MDPI, 2019) Beyl, Talita; Louw, Tobias M.; Pott, Robert W. M.
    ENGLISH ABSTRACT: Anaerobic digestion (AD) is an important industrial process, particularly in a biorefinery approach. The liquid effluent and carbon dioxide in the off-gas, can be used to produce high-value products through the cultivation of cyanobacteria. Growth on AD effluent is often limited due to substrate limitation or inhibitory compounds. This study demonstrates the successful cultivation of Synechococcus on minimally amended AD effluent, supplemented with MgSO4 and diluted with seawater. An 8 L airlift reactor illustrated growth in a pilot scale setup. Higher biomass yields were observed for cyanobacteria grown in diluted AD effluent compared to minimal medium, with 60% total nitrogen removal in the effluent. It was demonstrated that controlling the pH, increasing dissolved salt concentrations and adding MgSO4 to the effluent allowed for the successful cultivation of the cyanobacterium, circumventing the addition of clean water for effluent dilution. This could ultimately increase the feasibility of anaerobic digestion-microalgae integrated biorefineries.

DSpace software copyright © 2002-2025 LYRASIS | Supported by Stellenbosch University


  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback